// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Complex numbers. use std::num::{Zero,One,ToStrRadix}; // FIXME #1284: handle complex NaN & infinity etc. This // probably doesn't map to C's _Complex correctly. // FIXME #5734:: Need generic sin/cos for .to/from_polar(). // FIXME #5735: Need generic sqrt to implement .norm(). /// A complex number in Cartesian form. #[deriving(Eq,Clone)] pub struct Cmplx { /// Real portion of the complex number re: T, /// Imaginary portion of the complex number im: T } pub type Complex = Cmplx; pub type Complex32 = Cmplx; pub type Complex64 = Cmplx; impl Cmplx { /// Create a new Cmplx #[inline] pub fn new(re: T, im: T) -> Cmplx { Cmplx { re: re, im: im } } /** Returns the square of the norm (since `T` doesn't necessarily have a sqrt function), i.e. `re^2 + im^2`. */ #[inline] pub fn norm_sqr(&self) -> T { self.re * self.re + self.im * self.im } /// Returns the complex conjugate. i.e. `re - i im` #[inline] pub fn conj(&self) -> Cmplx { Cmplx::new(self.re.clone(), -self.im) } /// Multiplies `self` by the scalar `t`. #[inline] pub fn scale(&self, t: T) -> Cmplx { Cmplx::new(self.re * t, self.im * t) } /// Divides `self` by the scalar `t`. #[inline] pub fn unscale(&self, t: T) -> Cmplx { Cmplx::new(self.re / t, self.im / t) } /// Returns `1/self` #[inline] pub fn inv(&self) -> Cmplx { let norm_sqr = self.norm_sqr(); Cmplx::new(self.re / norm_sqr, -self.im / norm_sqr) } } impl Cmplx { /// Calculate |self| #[inline] pub fn norm(&self) -> T { self.re.hypot(&self.im) } } impl Cmplx { /// Calculate the principal Arg of self. #[inline] pub fn arg(&self) -> T { self.im.atan2(&self.re) } /// Convert to polar form (r, theta), such that `self = r * exp(i /// * theta)` #[inline] pub fn to_polar(&self) -> (T, T) { (self.norm(), self.arg()) } /// Convert a polar representation into a complex number. #[inline] pub fn from_polar(r: &T, theta: &T) -> Cmplx { Cmplx::new(r * theta.cos(), r * theta.sin()) } } /* arithmetic */ // (a + i b) + (c + i d) == (a + c) + i (b + d) impl Add, Cmplx> for Cmplx { #[inline] fn add(&self, other: &Cmplx) -> Cmplx { Cmplx::new(self.re + other.re, self.im + other.im) } } // (a + i b) - (c + i d) == (a - c) + i (b - d) impl Sub, Cmplx> for Cmplx { #[inline] fn sub(&self, other: &Cmplx) -> Cmplx { Cmplx::new(self.re - other.re, self.im - other.im) } } // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c) impl Mul, Cmplx> for Cmplx { #[inline] fn mul(&self, other: &Cmplx) -> Cmplx { Cmplx::new(self.re*other.re - self.im*other.im, self.re*other.im + self.im*other.re) } } // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d) // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)] impl Div, Cmplx> for Cmplx { #[inline] fn div(&self, other: &Cmplx) -> Cmplx { let norm_sqr = other.norm_sqr(); Cmplx::new((self.re*other.re + self.im*other.im) / norm_sqr, (self.im*other.re - self.re*other.im) / norm_sqr) } } impl Neg> for Cmplx { #[inline] fn neg(&self) -> Cmplx { Cmplx::new(-self.re, -self.im) } } /* constants */ impl Zero for Cmplx { #[inline] fn zero() -> Cmplx { Cmplx::new(Zero::zero(), Zero::zero()) } #[inline] fn is_zero(&self) -> bool { self.re.is_zero() && self.im.is_zero() } } impl One for Cmplx { #[inline] fn one() -> Cmplx { Cmplx::new(One::one(), Zero::zero()) } } /* string conversions */ impl ToStr for Cmplx { fn to_str(&self) -> ~str { if self.im < Zero::zero() { fmt!("%s-%si", self.re.to_str(), (-self.im).to_str()) } else { fmt!("%s+%si", self.re.to_str(), self.im.to_str()) } } } impl ToStrRadix for Cmplx { fn to_str_radix(&self, radix: uint) -> ~str { if self.im < Zero::zero() { fmt!("%s-%si", self.re.to_str_radix(radix), (-self.im).to_str_radix(radix)) } else { fmt!("%s+%si", self.re.to_str_radix(radix), self.im.to_str_radix(radix)) } } } #[cfg(test)] mod test { #[allow(non_uppercase_statics)]; use super::*; use std::num::{Zero,One,Real}; pub static _0_0i : Complex = Cmplx { re: 0f, im: 0f }; pub static _1_0i : Complex = Cmplx { re: 1f, im: 0f }; pub static _1_1i : Complex = Cmplx { re: 1f, im: 1f }; pub static _0_1i : Complex = Cmplx { re: 0f, im: 1f }; pub static _neg1_1i : Complex = Cmplx { re: -1f, im: 1f }; pub static _05_05i : Complex = Cmplx { re: 0.5f, im: 0.5f }; pub static all_consts : [Complex, .. 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i]; #[test] fn test_consts() { // check our constants are what Cmplx::new creates fn test(c : Complex, r : float, i: float) { assert_eq!(c, Cmplx::new(r,i)); } test(_0_0i, 0f, 0f); test(_1_0i, 1f, 0f); test(_1_1i, 1f, 1f); test(_neg1_1i, -1f, 1f); test(_05_05i, 0.5f, 0.5f); assert_eq!(_0_0i, Zero::zero()); assert_eq!(_1_0i, One::one()); } #[test] #[ignore(cfg(target_arch = "x86"))] // FIXME #7158: (maybe?) currently failing on x86. fn test_norm() { fn test(c: Complex, ns: float) { assert_eq!(c.norm_sqr(), ns); assert_eq!(c.norm(), ns.sqrt()) } test(_0_0i, 0f); test(_1_0i, 1f); test(_1_1i, 2f); test(_neg1_1i, 2f); test(_05_05i, 0.5f); } #[test] fn test_scale_unscale() { assert_eq!(_05_05i.scale(2f), _1_1i); assert_eq!(_1_1i.unscale(2f), _05_05i); for &c in all_consts.iter() { assert_eq!(c.scale(2f).unscale(2f), c); } } #[test] fn test_conj() { for &c in all_consts.iter() { assert_eq!(c.conj(), Cmplx::new(c.re, -c.im)); assert_eq!(c.conj().conj(), c); } } #[test] fn test_inv() { assert_eq!(_1_1i.inv(), _05_05i.conj()); assert_eq!(_1_0i.inv(), _1_0i.inv()); } #[test] #[should_fail] #[ignore] fn test_inv_zero() { // FIXME #5736: should this really fail, or just NaN? _0_0i.inv(); } #[test] fn test_arg() { fn test(c: Complex, arg: float) { assert!(c.arg().approx_eq(&arg)) } test(_1_0i, 0f); test(_1_1i, 0.25f * Real::pi()); test(_neg1_1i, 0.75f * Real::pi()); test(_05_05i, 0.25f * Real::pi()); } #[test] fn test_polar_conv() { fn test(c: Complex) { let (r, theta) = c.to_polar(); assert!((c - Cmplx::from_polar(&r, &theta)).norm() < 1e-6); } for &c in all_consts.iter() { test(c); } } mod arith { use super::*; use std::num::Zero; #[test] fn test_add() { assert_eq!(_05_05i + _05_05i, _1_1i); assert_eq!(_0_1i + _1_0i, _1_1i); assert_eq!(_1_0i + _neg1_1i, _0_1i); for &c in all_consts.iter() { assert_eq!(_0_0i + c, c); assert_eq!(c + _0_0i, c); } } #[test] fn test_sub() { assert_eq!(_05_05i - _05_05i, _0_0i); assert_eq!(_0_1i - _1_0i, _neg1_1i); assert_eq!(_0_1i - _neg1_1i, _1_0i); for &c in all_consts.iter() { assert_eq!(c - _0_0i, c); assert_eq!(c - c, _0_0i); } } #[test] fn test_mul() { assert_eq!(_05_05i * _05_05i, _0_1i.unscale(2f)); assert_eq!(_1_1i * _0_1i, _neg1_1i); // i^2 & i^4 assert_eq!(_0_1i * _0_1i, -_1_0i); assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i); for &c in all_consts.iter() { assert_eq!(c * _1_0i, c); assert_eq!(_1_0i * c, c); } } #[test] fn test_div() { assert_eq!(_neg1_1i / _0_1i, _1_1i); for &c in all_consts.iter() { if c != Zero::zero() { assert_eq!(c / c, _1_0i); } } } #[test] fn test_neg() { assert_eq!(-_1_0i + _0_1i, _neg1_1i); assert_eq!((-_0_1i) * _0_1i, _1_0i); for &c in all_consts.iter() { assert_eq!(-(-c), c); } } } #[test] fn test_to_str() { fn test(c : Complex, s: ~str) { assert_eq!(c.to_str(), s); } test(_0_0i, ~"0+0i"); test(_1_0i, ~"1+0i"); test(_0_1i, ~"0+1i"); test(_1_1i, ~"1+1i"); test(_neg1_1i, ~"-1+1i"); test(-_neg1_1i, ~"1-1i"); test(_05_05i, ~"0.5+0.5i"); } }