rust/src/librustc_trans/trans/cabi_x86_64.rs

465 lines
13 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The classification code for the x86_64 ABI is taken from the clay language
// https://github.com/jckarter/clay/blob/master/compiler/src/externals.cpp
#![allow(non_upper_case_globals)]
use self::RegClass::*;
use llvm::{Integer, Pointer, Float, Double};
use llvm::{Struct, Array, Attribute, Vector};
use trans::cabi::{ArgType, FnType};
use trans::context::CrateContext;
use trans::type_::Type;
use std::cmp;
#[derive(Clone, Copy, PartialEq)]
enum RegClass {
NoClass,
Int,
SSEFs,
SSEFv,
SSEDs,
SSEDv,
SSEInt(/* bitwidth */ u64),
/// Data that can appear in the upper half of an SSE register.
SSEUp,
X87,
X87Up,
ComplexX87,
Memory
}
trait TypeMethods {
fn is_reg_ty(&self) -> bool;
}
impl TypeMethods for Type {
fn is_reg_ty(&self) -> bool {
match self.kind() {
Integer | Pointer | Float | Double => true,
_ => false
}
}
}
impl RegClass {
fn is_sse(&self) -> bool {
match *self {
SSEFs | SSEFv | SSEDs | SSEDv | SSEInt(_) => true,
_ => false
}
}
}
trait ClassList {
fn is_pass_byval(&self) -> bool;
fn is_ret_bysret(&self) -> bool;
}
impl ClassList for [RegClass] {
fn is_pass_byval(&self) -> bool {
if self.is_empty() { return false; }
let class = self[0];
class == Memory
|| class == X87
|| class == ComplexX87
}
fn is_ret_bysret(&self) -> bool {
if self.is_empty() { return false; }
self[0] == Memory
}
}
fn classify_ty(ty: Type) -> Vec<RegClass> {
fn align(off: usize, ty: Type) -> usize {
let a = ty_align(ty);
return (off + a - 1) / a * a;
}
fn ty_align(ty: Type) -> usize {
match ty.kind() {
Integer => ((ty.int_width() as usize) + 7) / 8,
Pointer => 8,
Float => 4,
Double => 8,
Struct => {
if ty.is_packed() {
1
} else {
let str_tys = ty.field_types();
str_tys.iter().fold(1, |a, t| cmp::max(a, ty_align(*t)))
}
}
Array => {
let elt = ty.element_type();
ty_align(elt)
}
Vector => {
let len = ty.vector_length();
let elt = ty.element_type();
ty_align(elt) * len
}
_ => panic!("ty_align: unhandled type")
}
}
fn ty_size(ty: Type) -> usize {
match ty.kind() {
Integer => (ty.int_width() as usize + 7) / 8,
Pointer => 8,
Float => 4,
Double => 8,
Struct => {
let str_tys = ty.field_types();
if ty.is_packed() {
str_tys.iter().fold(0, |s, t| s + ty_size(*t))
} else {
let size = str_tys.iter().fold(0, |s, t| align(s, *t) + ty_size(*t));
align(size, ty)
}
}
Array => {
let len = ty.array_length();
let elt = ty.element_type();
let eltsz = ty_size(elt);
len * eltsz
}
Vector => {
let len = ty.vector_length();
let elt = ty.element_type();
let eltsz = ty_size(elt);
len * eltsz
}
_ => panic!("ty_size: unhandled type")
}
}
fn all_mem(cls: &mut [RegClass]) {
for elt in cls {
*elt = Memory;
}
}
fn unify(cls: &mut [RegClass],
i: usize,
newv: RegClass) {
if cls[i] == newv { return }
let to_write = match (cls[i], newv) {
(NoClass, _) => newv,
(_, NoClass) => return,
(Memory, _) |
(_, Memory) => Memory,
(Int, _) |
(_, Int) => Int,
(X87, _) |
(X87Up, _) |
(ComplexX87, _) |
(_, X87) |
(_, X87Up) |
(_, ComplexX87) => Memory,
(SSEFv, SSEUp) |
(SSEFs, SSEUp) |
(SSEDv, SSEUp) |
(SSEDs, SSEUp) |
(SSEInt(_), SSEUp) => return,
(_, _) => newv
};
cls[i] = to_write;
}
fn classify_struct(tys: &[Type],
cls: &mut [RegClass],
i: usize,
off: usize,
packed: bool) {
let mut field_off = off;
for ty in tys {
if !packed {
field_off = align(field_off, *ty);
}
classify(*ty, cls, i, field_off);
field_off += ty_size(*ty);
}
}
fn classify(ty: Type,
cls: &mut [RegClass], ix: usize,
off: usize) {
let t_align = ty_align(ty);
let t_size = ty_size(ty);
let misalign = off % t_align;
if misalign != 0 {
let mut i = off / 8;
let e = (off + t_size + 7) / 8;
while i < e {
unify(cls, ix + i, Memory);
i += 1;
}
return;
}
match ty.kind() {
Integer |
Pointer => {
unify(cls, ix + off / 8, Int);
}
Float => {
if off % 8 == 4 {
unify(cls, ix + off / 8, SSEFv);
} else {
unify(cls, ix + off / 8, SSEFs);
}
}
Double => {
unify(cls, ix + off / 8, SSEDs);
}
Struct => {
classify_struct(&ty.field_types(), cls, ix, off, ty.is_packed());
}
Array => {
let len = ty.array_length();
let elt = ty.element_type();
let eltsz = ty_size(elt);
let mut i = 0;
while i < len {
classify(elt, cls, ix, off + i * eltsz);
i += 1;
}
}
Vector => {
let len = ty.vector_length();
let elt = ty.element_type();
let eltsz = ty_size(elt);
let mut reg = match elt.kind() {
Integer => SSEInt(elt.int_width()),
Float => SSEFv,
Double => SSEDv,
_ => panic!("classify: unhandled vector element type")
};
let mut i = 0;
while i < len {
unify(cls, ix + (off + i * eltsz) / 8, reg);
// everything after the first one is the upper
// half of a register.
reg = SSEUp;
i += 1;
}
}
_ => panic!("classify: unhandled type")
}
}
fn fixup(ty: Type, cls: &mut [RegClass]) {
let mut i = 0;
let ty_kind = ty.kind();
let e = cls.len();
if cls.len() > 2 && (ty_kind == Struct || ty_kind == Array || ty_kind == Vector) {
if cls[i].is_sse() {
i += 1;
while i < e {
if cls[i] != SSEUp {
all_mem(cls);
return;
}
i += 1;
}
} else {
all_mem(cls);
return
}
} else {
while i < e {
if cls[i] == Memory {
all_mem(cls);
return;
}
if cls[i] == X87Up {
// for darwin
// cls[i] = SSEDs;
all_mem(cls);
return;
}
if cls[i] == SSEUp {
cls[i] = SSEDv;
} else if cls[i].is_sse() {
i += 1;
while i != e && cls[i] == SSEUp { i += 1; }
} else if cls[i] == X87 {
i += 1;
while i != e && cls[i] == X87Up { i += 1; }
} else {
i += 1;
}
}
}
}
let words = (ty_size(ty) + 7) / 8;
let mut cls = vec![NoClass; words];
if words > 4 {
all_mem(&mut cls);
return cls;
}
classify(ty, &mut cls, 0, 0);
fixup(ty, &mut cls);
return cls;
}
fn llreg_ty(ccx: &CrateContext, cls: &[RegClass]) -> Type {
fn llvec_len(cls: &[RegClass]) -> usize {
let mut len = 1;
for c in cls {
if *c != SSEUp {
break;
}
len += 1;
}
return len;
}
let mut tys = Vec::new();
let mut i = 0;
let e = cls.len();
while i < e {
match cls[i] {
Int => {
tys.push(Type::i64(ccx));
}
SSEFv | SSEDv | SSEInt(_) => {
let (elts_per_word, elt_ty) = match cls[i] {
SSEFv => (2, Type::f32(ccx)),
SSEDv => (1, Type::f64(ccx)),
SSEInt(bits) => {
assert!(bits == 8 || bits == 16 || bits == 32 || bits == 64,
"llreg_ty: unsupported SSEInt width {}", bits);
(64 / bits, Type::ix(ccx, bits))
}
_ => unreachable!(),
};
let vec_len = llvec_len(&cls[i + 1..]);
let vec_ty = Type::vector(&elt_ty, vec_len as u64 * elts_per_word);
tys.push(vec_ty);
i += vec_len;
continue;
}
SSEFs => {
tys.push(Type::f32(ccx));
}
SSEDs => {
tys.push(Type::f64(ccx));
}
_ => panic!("llregtype: unhandled class")
}
i += 1;
}
if tys.len() == 1 && tys[0].kind() == Vector {
// if the type contains only a vector, pass it as that vector.
tys[0]
} else {
Type::struct_(ccx, &tys, false)
}
}
pub fn compute_abi_info(ccx: &CrateContext,
atys: &[Type],
rty: Type,
ret_def: bool) -> FnType {
fn x86_64_ty<F>(ccx: &CrateContext,
ty: Type,
is_mem_cls: F,
ind_attr: Attribute)
-> ArgType where
F: FnOnce(&[RegClass]) -> bool,
{
if !ty.is_reg_ty() {
let cls = classify_ty(ty);
if is_mem_cls(&cls) {
ArgType::indirect(ty, Some(ind_attr))
} else {
ArgType::direct(ty,
Some(llreg_ty(ccx, &cls)),
None,
None)
}
} else {
let attr = if ty == Type::i1(ccx) { Some(Attribute::ZExt) } else { None };
ArgType::direct(ty, None, None, attr)
}
}
let mut int_regs = 6; // RDI, RSI, RDX, RCX, R8, R9
let mut sse_regs = 8; // XMM0-7
let ret_ty = if ret_def {
x86_64_ty(ccx, rty, |cls| {
if cls.is_ret_bysret() {
// `sret` parameter thus one less register available
int_regs -= 1;
true
} else {
false
}
}, Attribute::StructRet)
} else {
ArgType::direct(Type::void(ccx), None, None, None)
};
let mut arg_tys = Vec::new();
for t in atys {
let ty = x86_64_ty(ccx, *t, |cls| {
let needed_int = cls.iter().filter(|&&c| c == Int).count() as isize;
let needed_sse = cls.iter().filter(|c| c.is_sse()).count() as isize;
let in_mem = cls.is_pass_byval() ||
int_regs < needed_int ||
sse_regs < needed_sse;
if in_mem {
// `byval` parameter thus one less integer register available
int_regs -= 1;
} else {
// split into sized chunks passed individually
int_regs -= needed_int;
sse_regs -= needed_sse;
}
in_mem
}, Attribute::ByVal);
arg_tys.push(ty);
// An integer, pointer, double or float parameter
// thus the above closure passed to `x86_64_ty` won't
// get called.
if t.kind() == Integer || t.kind() == Pointer {
int_regs -= 1;
} else if t.kind() == Double || t.kind() == Float {
sse_regs -= 1;
}
}
return FnType {
arg_tys: arg_tys,
ret_ty: ret_ty,
};
}