// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // The classification code for the x86_64 ABI is taken from the clay language // https://github.com/jckarter/clay/blob/master/compiler/src/externals.cpp #![allow(non_upper_case_globals)] use self::RegClass::*; use llvm::{Integer, Pointer, Float, Double}; use llvm::{Struct, Array, Attribute, Vector}; use trans::cabi::{ArgType, FnType}; use trans::context::CrateContext; use trans::type_::Type; use std::cmp; #[derive(Clone, Copy, PartialEq)] enum RegClass { NoClass, Int, SSEFs, SSEFv, SSEDs, SSEDv, SSEInt(/* bitwidth */ u64), /// Data that can appear in the upper half of an SSE register. SSEUp, X87, X87Up, ComplexX87, Memory } trait TypeMethods { fn is_reg_ty(&self) -> bool; } impl TypeMethods for Type { fn is_reg_ty(&self) -> bool { match self.kind() { Integer | Pointer | Float | Double => true, _ => false } } } impl RegClass { fn is_sse(&self) -> bool { match *self { SSEFs | SSEFv | SSEDs | SSEDv | SSEInt(_) => true, _ => false } } } trait ClassList { fn is_pass_byval(&self) -> bool; fn is_ret_bysret(&self) -> bool; } impl ClassList for [RegClass] { fn is_pass_byval(&self) -> bool { if self.is_empty() { return false; } let class = self[0]; class == Memory || class == X87 || class == ComplexX87 } fn is_ret_bysret(&self) -> bool { if self.is_empty() { return false; } self[0] == Memory } } fn classify_ty(ty: Type) -> Vec { fn align(off: usize, ty: Type) -> usize { let a = ty_align(ty); return (off + a - 1) / a * a; } fn ty_align(ty: Type) -> usize { match ty.kind() { Integer => ((ty.int_width() as usize) + 7) / 8, Pointer => 8, Float => 4, Double => 8, Struct => { if ty.is_packed() { 1 } else { let str_tys = ty.field_types(); str_tys.iter().fold(1, |a, t| cmp::max(a, ty_align(*t))) } } Array => { let elt = ty.element_type(); ty_align(elt) } Vector => { let len = ty.vector_length(); let elt = ty.element_type(); ty_align(elt) * len } _ => panic!("ty_align: unhandled type") } } fn ty_size(ty: Type) -> usize { match ty.kind() { Integer => (ty.int_width() as usize + 7) / 8, Pointer => 8, Float => 4, Double => 8, Struct => { let str_tys = ty.field_types(); if ty.is_packed() { str_tys.iter().fold(0, |s, t| s + ty_size(*t)) } else { let size = str_tys.iter().fold(0, |s, t| align(s, *t) + ty_size(*t)); align(size, ty) } } Array => { let len = ty.array_length(); let elt = ty.element_type(); let eltsz = ty_size(elt); len * eltsz } Vector => { let len = ty.vector_length(); let elt = ty.element_type(); let eltsz = ty_size(elt); len * eltsz } _ => panic!("ty_size: unhandled type") } } fn all_mem(cls: &mut [RegClass]) { for elt in cls { *elt = Memory; } } fn unify(cls: &mut [RegClass], i: usize, newv: RegClass) { if cls[i] == newv { return } let to_write = match (cls[i], newv) { (NoClass, _) => newv, (_, NoClass) => return, (Memory, _) | (_, Memory) => Memory, (Int, _) | (_, Int) => Int, (X87, _) | (X87Up, _) | (ComplexX87, _) | (_, X87) | (_, X87Up) | (_, ComplexX87) => Memory, (SSEFv, SSEUp) | (SSEFs, SSEUp) | (SSEDv, SSEUp) | (SSEDs, SSEUp) | (SSEInt(_), SSEUp) => return, (_, _) => newv }; cls[i] = to_write; } fn classify_struct(tys: &[Type], cls: &mut [RegClass], i: usize, off: usize, packed: bool) { let mut field_off = off; for ty in tys { if !packed { field_off = align(field_off, *ty); } classify(*ty, cls, i, field_off); field_off += ty_size(*ty); } } fn classify(ty: Type, cls: &mut [RegClass], ix: usize, off: usize) { let t_align = ty_align(ty); let t_size = ty_size(ty); let misalign = off % t_align; if misalign != 0 { let mut i = off / 8; let e = (off + t_size + 7) / 8; while i < e { unify(cls, ix + i, Memory); i += 1; } return; } match ty.kind() { Integer | Pointer => { unify(cls, ix + off / 8, Int); } Float => { if off % 8 == 4 { unify(cls, ix + off / 8, SSEFv); } else { unify(cls, ix + off / 8, SSEFs); } } Double => { unify(cls, ix + off / 8, SSEDs); } Struct => { classify_struct(&ty.field_types(), cls, ix, off, ty.is_packed()); } Array => { let len = ty.array_length(); let elt = ty.element_type(); let eltsz = ty_size(elt); let mut i = 0; while i < len { classify(elt, cls, ix, off + i * eltsz); i += 1; } } Vector => { let len = ty.vector_length(); let elt = ty.element_type(); let eltsz = ty_size(elt); let mut reg = match elt.kind() { Integer => SSEInt(elt.int_width()), Float => SSEFv, Double => SSEDv, _ => panic!("classify: unhandled vector element type") }; let mut i = 0; while i < len { unify(cls, ix + (off + i * eltsz) / 8, reg); // everything after the first one is the upper // half of a register. reg = SSEUp; i += 1; } } _ => panic!("classify: unhandled type") } } fn fixup(ty: Type, cls: &mut [RegClass]) { let mut i = 0; let ty_kind = ty.kind(); let e = cls.len(); if cls.len() > 2 && (ty_kind == Struct || ty_kind == Array || ty_kind == Vector) { if cls[i].is_sse() { i += 1; while i < e { if cls[i] != SSEUp { all_mem(cls); return; } i += 1; } } else { all_mem(cls); return } } else { while i < e { if cls[i] == Memory { all_mem(cls); return; } if cls[i] == X87Up { // for darwin // cls[i] = SSEDs; all_mem(cls); return; } if cls[i] == SSEUp { cls[i] = SSEDv; } else if cls[i].is_sse() { i += 1; while i != e && cls[i] == SSEUp { i += 1; } } else if cls[i] == X87 { i += 1; while i != e && cls[i] == X87Up { i += 1; } } else { i += 1; } } } } let words = (ty_size(ty) + 7) / 8; let mut cls = vec![NoClass; words]; if words > 4 { all_mem(&mut cls); return cls; } classify(ty, &mut cls, 0, 0); fixup(ty, &mut cls); return cls; } fn llreg_ty(ccx: &CrateContext, cls: &[RegClass]) -> Type { fn llvec_len(cls: &[RegClass]) -> usize { let mut len = 1; for c in cls { if *c != SSEUp { break; } len += 1; } return len; } let mut tys = Vec::new(); let mut i = 0; let e = cls.len(); while i < e { match cls[i] { Int => { tys.push(Type::i64(ccx)); } SSEFv | SSEDv | SSEInt(_) => { let (elts_per_word, elt_ty) = match cls[i] { SSEFv => (2, Type::f32(ccx)), SSEDv => (1, Type::f64(ccx)), SSEInt(bits) => { assert!(bits == 8 || bits == 16 || bits == 32 || bits == 64, "llreg_ty: unsupported SSEInt width {}", bits); (64 / bits, Type::ix(ccx, bits)) } _ => unreachable!(), }; let vec_len = llvec_len(&cls[i + 1..]); let vec_ty = Type::vector(&elt_ty, vec_len as u64 * elts_per_word); tys.push(vec_ty); i += vec_len; continue; } SSEFs => { tys.push(Type::f32(ccx)); } SSEDs => { tys.push(Type::f64(ccx)); } _ => panic!("llregtype: unhandled class") } i += 1; } if tys.len() == 1 && tys[0].kind() == Vector { // if the type contains only a vector, pass it as that vector. tys[0] } else { Type::struct_(ccx, &tys, false) } } pub fn compute_abi_info(ccx: &CrateContext, atys: &[Type], rty: Type, ret_def: bool) -> FnType { fn x86_64_ty(ccx: &CrateContext, ty: Type, is_mem_cls: F, ind_attr: Attribute) -> ArgType where F: FnOnce(&[RegClass]) -> bool, { if !ty.is_reg_ty() { let cls = classify_ty(ty); if is_mem_cls(&cls) { ArgType::indirect(ty, Some(ind_attr)) } else { ArgType::direct(ty, Some(llreg_ty(ccx, &cls)), None, None) } } else { let attr = if ty == Type::i1(ccx) { Some(Attribute::ZExt) } else { None }; ArgType::direct(ty, None, None, attr) } } let mut int_regs = 6; // RDI, RSI, RDX, RCX, R8, R9 let mut sse_regs = 8; // XMM0-7 let ret_ty = if ret_def { x86_64_ty(ccx, rty, |cls| { if cls.is_ret_bysret() { // `sret` parameter thus one less register available int_regs -= 1; true } else { false } }, Attribute::StructRet) } else { ArgType::direct(Type::void(ccx), None, None, None) }; let mut arg_tys = Vec::new(); for t in atys { let ty = x86_64_ty(ccx, *t, |cls| { let needed_int = cls.iter().filter(|&&c| c == Int).count() as isize; let needed_sse = cls.iter().filter(|c| c.is_sse()).count() as isize; let in_mem = cls.is_pass_byval() || int_regs < needed_int || sse_regs < needed_sse; if in_mem { // `byval` parameter thus one less integer register available int_regs -= 1; } else { // split into sized chunks passed individually int_regs -= needed_int; sse_regs -= needed_sse; } in_mem }, Attribute::ByVal); arg_tys.push(ty); // An integer, pointer, double or float parameter // thus the above closure passed to `x86_64_ty` won't // get called. if t.kind() == Integer || t.kind() == Pointer { int_regs -= 1; } else if t.kind() == Double || t.kind() == Float { sse_regs -= 1; } } return FnType { arg_tys: arg_tys, ret_ty: ret_ty, }; }