rust/src/doc/trpl/match.md
2015-02-16 23:13:58 +01:00

157 lines
4.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

% Match
Often, a simple `if`/`else` isn't enough, because you have more than two
possible options. Also, `else` conditions can get incredibly complicated, so
what's the solution?
Rust has a keyword, `match`, that allows you to replace complicated `if`/`else`
groupings with something more powerful. Check it out:
```{rust}
let x = 5;
match x {
1 => println!("one"),
2 => println!("two"),
3 => println!("three"),
4 => println!("four"),
5 => println!("five"),
_ => println!("something else"),
}
```
`match` takes an expression and then branches based on its value. Each *arm* of
the branch is of the form `val => expression`. When the value matches, that arm's
expression will be evaluated. It's called `match` because of the term 'pattern
matching', which `match` is an implementation of.
So what's the big advantage here? Well, there are a few. First of all, `match`
enforces *exhaustiveness checking*. Do you see that last arm, the one with the
underscore (`_`)? If we remove that arm, Rust will give us an error:
```text
error: non-exhaustive patterns: `_` not covered
```
In other words, Rust is trying to tell us we forgot a value. Because `x` is an
integer, Rust knows that it can have a number of different values for example,
`6`. Without the `_`, however, there is no arm that could match, and so Rust refuses
to compile. `_` acts like a *catch-all arm*. If none of the other arms match,
the arm with `_` will, and since we have this catch-all arm, we now have an arm
for every possible value of `x`, and so our program will compile successfully.
`match` statements also destructure enums, as well. Remember this code from the
section on enums?
```{rust}
use std::cmp::Ordering;
fn cmp(a: i32, b: i32) -> Ordering {
if a < b { Ordering::Less }
else if a > b { Ordering::Greater }
else { Ordering::Equal }
}
fn main() {
let x = 5;
let y = 10;
let ordering = cmp(x, y);
if ordering == Ordering::Less {
println!("less");
} else if ordering == Ordering::Greater {
println!("greater");
} else if ordering == Ordering::Equal {
println!("equal");
}
}
```
We can re-write this as a `match`:
```{rust}
use std::cmp::Ordering;
fn cmp(a: i32, b: i32) -> Ordering {
if a < b { Ordering::Less }
else if a > b { Ordering::Greater }
else { Ordering::Equal }
}
fn main() {
let x = 5;
let y = 10;
match cmp(x, y) {
Ordering::Less => println!("less"),
Ordering::Greater => println!("greater"),
Ordering::Equal => println!("equal"),
}
}
```
This version has way less noise, and it also checks exhaustively to make sure
that we have covered all possible variants of `Ordering`. With our `if`/`else`
version, if we had forgotten the `Greater` case, for example, our program would
have happily compiled. If we forget in the `match`, it will not. Rust helps us
make sure to cover all of our bases.
`match` expressions also allow us to get the values contained in an `enum`
(also known as destructuring) as follows:
```{rust}
enum OptionalInt {
Value(i32),
Missing,
}
fn main() {
let x = OptionalInt::Value(5);
let y = OptionalInt::Missing;
match x {
OptionalInt::Value(n) => println!("x is {}", n),
OptionalInt::Missing => println!("x is missing!"),
}
match y {
OptionalInt::Value(n) => println!("y is {}", n),
OptionalInt::Missing => println!("y is missing!"),
}
}
```
That is how you can get and use the values contained in `enum`s.
It can also allow us to handle errors or unexpected computations; for example, a
function that is not guaranteed to be able to compute a result (an `i32` here)
could return an `OptionalInt`, and we would handle that value with a `match`.
As you can see, `enum` and `match` used together are quite useful!
`match` is also an expression, which means we can use it on the right-hand
side of a `let` binding or directly where an expression is used. We could
also implement the previous example like this:
```{rust}
use std::cmp::Ordering;
fn cmp(a: i32, b: i32) -> Ordering {
if a < b { Ordering::Less }
else if a > b { Ordering::Greater }
else { Ordering::Equal }
}
fn main() {
let x = 5;
let y = 10;
println!("{}", match cmp(x, y) {
Ordering::Less => "less",
Ordering::Greater => "greater",
Ordering::Equal => "equal",
});
}
```
Sometimes, it's a nice pattern.