rust/src/libstd/str.rs
2013-06-10 23:02:54 +10:00

3797 lines
110 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* String manipulation
*
* Strings are a packed UTF-8 representation of text, stored as null
* terminated buffers of u8 bytes. Strings should be indexed in bytes,
* for efficiency, but UTF-8 unsafe operations should be avoided. For
* some heavy-duty uses, try std::rope.
*/
use at_vec;
use cast::transmute;
use cast;
use char;
use clone::Clone;
use cmp::{TotalOrd, Ordering, Less, Equal, Greater};
use container::Container;
use iter::Times;
use iterator::{Iterator, IteratorUtil, FilterIterator};
use libc;
use option::{None, Option, Some};
use old_iter::{BaseIter, EqIter};
use ptr;
use ptr::RawPtr;
use str;
use to_str::ToStr;
use uint;
use vec;
use vec::{OwnedVector, OwnedCopyableVector, ImmutableVector};
#[cfg(not(test))] use cmp::{Eq, Ord, Equiv, TotalEq};
/*
Section: Conditions
*/
condition! {
not_utf8: (~str) -> ~str;
}
/*
Section: Creating a string
*/
/**
* Convert a vector of bytes to a new UTF-8 string
*
* # Failure
*
* Raises the `not_utf8` condition if invalid UTF-8
*/
pub fn from_bytes(vv: &[u8]) -> ~str {
use str::not_utf8::cond;
if !is_utf8(vv) {
let first_bad_byte = vec::find(vv, |b| !is_utf8([*b])).get();
cond.raise(fmt!("from_bytes: input is not UTF-8; first bad byte is %u",
first_bad_byte as uint))
}
else {
return unsafe { raw::from_bytes(vv) }
}
}
/**
* Convert a vector of bytes to a UTF-8 string.
* The vector needs to be one byte longer than the string, and end with a 0 byte.
*
* Compared to `from_bytes()`, this fn doesn't need to allocate a new owned str.
*
* # Failure
*
* Fails if invalid UTF-8
* Fails if not null terminated
*/
pub fn from_bytes_with_null<'a>(vv: &'a [u8]) -> &'a str {
assert_eq!(vv[vv.len() - 1], 0);
assert!(is_utf8(vv));
return unsafe { raw::from_bytes_with_null(vv) };
}
/**
* Converts a vector to a string slice without performing any allocations.
*
* Once the slice has been validated as utf-8, it is transmuted in-place and
* returned as a '&str' instead of a '&[u8]'
*
* # Failure
*
* Fails if invalid UTF-8
*/
pub fn from_bytes_slice<'a>(vector: &'a [u8]) -> &'a str {
unsafe {
assert!(is_utf8(vector));
let (ptr, len): (*u8, uint) = ::cast::transmute(vector);
let string: &'a str = ::cast::transmute((ptr, len + 1));
string
}
}
/// Copy a slice into a new unique str
#[inline(always)]
pub fn to_owned(s: &str) -> ~str {
unsafe { raw::slice_bytes_owned(s, 0, len(s)) }
}
impl ToStr for ~str {
#[inline(always)]
fn to_str(&self) -> ~str { to_owned(*self) }
}
impl<'self> ToStr for &'self str {
#[inline(always)]
fn to_str(&self) -> ~str { to_owned(*self) }
}
impl ToStr for @str {
#[inline(always)]
fn to_str(&self) -> ~str { to_owned(*self) }
}
/**
* Convert a byte to a UTF-8 string
*
* # Failure
*
* Fails if invalid UTF-8
*/
pub fn from_byte(b: u8) -> ~str {
assert!(b < 128u8);
unsafe { ::cast::transmute(~[b, 0u8]) }
}
/// Appends a character at the end of a string
pub fn push_char(s: &mut ~str, ch: char) {
unsafe {
let code = ch as uint;
let nb = if code < max_one_b { 1u }
else if code < max_two_b { 2u }
else if code < max_three_b { 3u }
else if code < max_four_b { 4u }
else if code < max_five_b { 5u }
else { 6u };
let len = len(*s);
let new_len = len + nb;
reserve_at_least(&mut *s, new_len);
let off = len;
do as_buf(*s) |buf, _len| {
let buf: *mut u8 = ::cast::transmute(buf);
match nb {
1u => {
*ptr::mut_offset(buf, off) = code as u8;
}
2u => {
*ptr::mut_offset(buf, off) = (code >> 6u & 31u | tag_two_b) as u8;
*ptr::mut_offset(buf, off + 1u) = (code & 63u | tag_cont) as u8;
}
3u => {
*ptr::mut_offset(buf, off) = (code >> 12u & 15u | tag_three_b) as u8;
*ptr::mut_offset(buf, off + 1u) = (code >> 6u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 2u) = (code & 63u | tag_cont) as u8;
}
4u => {
*ptr::mut_offset(buf, off) = (code >> 18u & 7u | tag_four_b) as u8;
*ptr::mut_offset(buf, off + 1u) = (code >> 12u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 2u) = (code >> 6u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 3u) = (code & 63u | tag_cont) as u8;
}
5u => {
*ptr::mut_offset(buf, off) = (code >> 24u & 3u | tag_five_b) as u8;
*ptr::mut_offset(buf, off + 1u) = (code >> 18u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 2u) = (code >> 12u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 3u) = (code >> 6u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 4u) = (code & 63u | tag_cont) as u8;
}
6u => {
*ptr::mut_offset(buf, off) = (code >> 30u & 1u | tag_six_b) as u8;
*ptr::mut_offset(buf, off + 1u) = (code >> 24u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 2u) = (code >> 18u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 3u) = (code >> 12u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 4u) = (code >> 6u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 5u) = (code & 63u | tag_cont) as u8;
}
_ => {}
}
}
raw::set_len(s, new_len);
}
}
/// Convert a char to a string
pub fn from_char(ch: char) -> ~str {
let mut buf = ~"";
push_char(&mut buf, ch);
buf
}
/// Convert a vector of chars to a string
pub fn from_chars(chs: &[char]) -> ~str {
let mut buf = ~"";
reserve(&mut buf, chs.len());
for chs.each |ch| {
push_char(&mut buf, *ch);
}
buf
}
/// Appends a string slice to the back of a string, without overallocating
#[inline(always)]
pub fn push_str_no_overallocate(lhs: &mut ~str, rhs: &str) {
unsafe {
let llen = lhs.len();
let rlen = rhs.len();
reserve(&mut *lhs, llen + rlen);
do as_buf(*lhs) |lbuf, _llen| {
do as_buf(rhs) |rbuf, _rlen| {
let dst = ptr::offset(lbuf, llen);
let dst = ::cast::transmute_mut_unsafe(dst);
ptr::copy_memory(dst, rbuf, rlen);
}
}
raw::set_len(lhs, llen + rlen);
}
}
/// Appends a string slice to the back of a string
#[inline(always)]
pub fn push_str(lhs: &mut ~str, rhs: &str) {
unsafe {
let llen = lhs.len();
let rlen = rhs.len();
reserve_at_least(&mut *lhs, llen + rlen);
do as_buf(*lhs) |lbuf, _llen| {
do as_buf(rhs) |rbuf, _rlen| {
let dst = ptr::offset(lbuf, llen);
let dst = ::cast::transmute_mut_unsafe(dst);
ptr::copy_memory(dst, rbuf, rlen);
}
}
raw::set_len(lhs, llen + rlen);
}
}
/// Concatenate two strings together
#[inline(always)]
pub fn append(lhs: ~str, rhs: &str) -> ~str {
let mut v = lhs;
push_str_no_overallocate(&mut v, rhs);
v
}
/// Concatenate a vector of strings
pub fn concat(v: &[~str]) -> ~str { v.concat() }
/// Concatenate a vector of strings
pub fn concat_slices(v: &[&str]) -> ~str { v.concat() }
/// Concatenate a vector of strings, placing a given separator between each
pub fn connect(v: &[~str], sep: &str) -> ~str { v.connect(sep) }
/// Concatenate a vector of strings, placing a given separator between each
pub fn connect_slices(v: &[&str], sep: &str) -> ~str { v.connect(sep) }
#[allow(missing_doc)]
pub trait StrVector {
pub fn concat(&self) -> ~str;
pub fn connect(&self, sep: &str) -> ~str;
}
impl<'self> StrVector for &'self [~str] {
/// Concatenate a vector of strings.
pub fn concat(&self) -> ~str {
if self.is_empty() { return ~""; }
let mut len = 0;
for self.each |ss| {
len += ss.len();
}
let mut s = ~"";
reserve(&mut s, len);
unsafe {
do as_buf(s) |buf, _| {
let mut buf = ::cast::transmute_mut_unsafe(buf);
for self.each |ss| {
do as_buf(*ss) |ssbuf, sslen| {
let sslen = sslen - 1;
ptr::copy_memory(buf, ssbuf, sslen);
buf = buf.offset(sslen);
}
}
}
raw::set_len(&mut s, len);
}
s
}
/// Concatenate a vector of strings, placing a given separator between each.
pub fn connect(&self, sep: &str) -> ~str {
if self.is_empty() { return ~""; }
// concat is faster
if sep.is_empty() { return self.concat(); }
// this is wrong without the guarantee that `self` is non-empty
let mut len = sep.len() * (self.len() - 1);
for self.each |ss| {
len += ss.len();
}
let mut s = ~"";
let mut first = true;
reserve(&mut s, len);
unsafe {
do as_buf(s) |buf, _| {
do as_buf(sep) |sepbuf, seplen| {
let seplen = seplen - 1;
let mut buf = ::cast::transmute_mut_unsafe(buf);
for self.each |ss| {
do as_buf(*ss) |ssbuf, sslen| {
let sslen = sslen - 1;
if first {
first = false;
} else {
ptr::copy_memory(buf, sepbuf, seplen);
buf = buf.offset(seplen);
}
ptr::copy_memory(buf, ssbuf, sslen);
buf = buf.offset(sslen);
}
}
}
}
raw::set_len(&mut s, len);
}
s
}
}
impl<'self> StrVector for &'self [&'self str] {
/// Concatenate a vector of strings.
pub fn concat(&self) -> ~str {
if self.is_empty() { return ~""; }
let mut len = 0;
for self.each |ss| {
len += ss.len();
}
let mut s = ~"";
reserve(&mut s, len);
unsafe {
do as_buf(s) |buf, _| {
let mut buf = ::cast::transmute_mut_unsafe(buf);
for self.each |ss| {
do as_buf(*ss) |ssbuf, sslen| {
let sslen = sslen - 1;
ptr::copy_memory(buf, ssbuf, sslen);
buf = buf.offset(sslen);
}
}
}
raw::set_len(&mut s, len);
}
s
}
/// Concatenate a vector of strings, placing a given separator between each.
pub fn connect(&self, sep: &str) -> ~str {
if self.is_empty() { return ~""; }
// concat is faster
if sep.is_empty() { return self.concat(); }
// this is wrong without the guarantee that `self` is non-empty
let mut len = sep.len() * (self.len() - 1);
for self.each |ss| {
len += ss.len();
}
let mut s = ~"";
let mut first = true;
reserve(&mut s, len);
unsafe {
do as_buf(s) |buf, _| {
do as_buf(sep) |sepbuf, seplen| {
let seplen = seplen - 1;
let mut buf = ::cast::transmute_mut_unsafe(buf);
for self.each |ss| {
do as_buf(*ss) |ssbuf, sslen| {
let sslen = sslen - 1;
if first {
first = false;
} else {
ptr::copy_memory(buf, sepbuf, seplen);
buf = buf.offset(seplen);
}
ptr::copy_memory(buf, ssbuf, sslen);
buf = buf.offset(sslen);
}
}
}
}
raw::set_len(&mut s, len);
}
s
}
}
/// Given a string, make a new string with repeated copies of it
pub fn repeat(ss: &str, nn: uint) -> ~str {
do as_buf(ss) |buf, len| {
let mut ret = ~"";
// ignore the NULL terminator
let len = len - 1;
reserve(&mut ret, nn * len);
unsafe {
do as_buf(ret) |rbuf, _len| {
let mut rbuf = ::cast::transmute_mut_unsafe(rbuf);
for nn.times {
ptr::copy_memory(rbuf, buf, len);
rbuf = rbuf.offset(len);
}
}
raw::set_len(&mut ret, nn * len);
}
ret
}
}
/*
Section: Adding to and removing from a string
*/
/**
* Remove the final character from a string and return it
*
* # Failure
*
* If the string does not contain any characters
*/
pub fn pop_char(s: &mut ~str) -> char {
let end = len(*s);
assert!(end > 0u);
let CharRange {ch, next} = char_range_at_reverse(*s, end);
unsafe { raw::set_len(s, next); }
return ch;
}
/**
* Remove the first character from a string and return it
*
* # Failure
*
* If the string does not contain any characters
*/
pub fn shift_char(s: &mut ~str) -> char {
let CharRange {ch, next} = char_range_at(*s, 0u);
*s = unsafe { raw::slice_bytes_owned(*s, next, len(*s)) };
return ch;
}
/**
* Removes the first character from a string slice and returns it. This does
* not allocate a new string; instead, it mutates a slice to point one
* character beyond the character that was shifted.
*
* # Failure
*
* If the string does not contain any characters
*/
#[inline]
pub fn slice_shift_char<'a>(s: &'a str) -> (char, &'a str) {
let CharRange {ch, next} = char_range_at(s, 0u);
let next_s = unsafe { raw::slice_bytes(s, next, len(s)) };
return (ch, next_s);
}
/// Prepend a char to a string
pub fn unshift_char(s: &mut ~str, ch: char) {
// This could be more efficient.
let mut new_str = ~"";
new_str.push_char(ch);
new_str.push_str(*s);
*s = new_str;
}
/**
* Returns a string with leading `chars_to_trim` removed.
*
* # Arguments
*
* * s - A string
* * chars_to_trim - A vector of chars
*
*/
pub fn trim_left_chars<'a>(s: &'a str, chars_to_trim: &[char]) -> &'a str {
if chars_to_trim.is_empty() { return s; }
match find(s, |c| !chars_to_trim.contains(&c)) {
None => "",
Some(first) => unsafe { raw::slice_bytes(s, first, s.len()) }
}
}
/**
* Returns a string with trailing `chars_to_trim` removed.
*
* # Arguments
*
* * s - A string
* * chars_to_trim - A vector of chars
*
*/
pub fn trim_right_chars<'a>(s: &'a str, chars_to_trim: &[char]) -> &'a str {
if chars_to_trim.is_empty() { return s; }
match rfind(s, |c| !chars_to_trim.contains(&c)) {
None => "",
Some(last) => {
let next = char_range_at(s, last).next;
unsafe { raw::slice_bytes(s, 0u, next) }
}
}
}
/**
* Returns a string with leading and trailing `chars_to_trim` removed.
*
* # Arguments
*
* * s - A string
* * chars_to_trim - A vector of chars
*
*/
pub fn trim_chars<'a>(s: &'a str, chars_to_trim: &[char]) -> &'a str {
trim_left_chars(trim_right_chars(s, chars_to_trim), chars_to_trim)
}
/// Returns a string with leading whitespace removed
pub fn trim_left<'a>(s: &'a str) -> &'a str {
match find(s, |c| !char::is_whitespace(c)) {
None => "",
Some(first) => unsafe { raw::slice_bytes(s, first, len(s)) }
}
}
/// Returns a string with trailing whitespace removed
pub fn trim_right<'a>(s: &'a str) -> &'a str {
match rfind(s, |c| !char::is_whitespace(c)) {
None => "",
Some(last) => {
let next = char_range_at(s, last).next;
unsafe { raw::slice_bytes(s, 0u, next) }
}
}
}
/// Returns a string with leading and trailing whitespace removed
pub fn trim<'a>(s: &'a str) -> &'a str { trim_left(trim_right(s)) }
/*
Section: Transforming strings
*/
/**
* Converts a string to a unique vector of bytes
*
* The result vector is not null-terminated.
*/
pub fn to_bytes(s: &str) -> ~[u8] {
unsafe {
let mut v: ~[u8] = ::cast::transmute(to_owned(s));
vec::raw::set_len(&mut v, len(s));
v
}
}
/// Work with the string as a byte slice, not including trailing null.
#[inline(always)]
pub fn byte_slice<T>(s: &str, f: &fn(v: &[u8]) -> T) -> T {
do as_buf(s) |p,n| {
unsafe { vec::raw::buf_as_slice(p, n-1u, f) }
}
}
/// Work with the string as a byte slice, not including trailing null, without
/// a callback.
#[inline(always)]
pub fn byte_slice_no_callback<'a>(s: &'a str) -> &'a [u8] {
unsafe {
cast::transmute(s)
}
}
/// Convert a string to a unique vector of characters
pub fn to_chars(s: &str) -> ~[char] {
s.iter().collect()
}
/**
* Take a substring of another.
*
* Returns a slice pointing at `n` characters starting from byte offset
* `begin`.
*/
pub fn substr<'a>(s: &'a str, begin: uint, n: uint) -> &'a str {
slice(s, begin, begin + count_bytes(s, begin, n))
}
/**
* Returns a slice of the given string from the byte range [`begin`..`end`)
*
* Fails when `begin` and `end` do not point to valid characters or beyond
* the last character of the string
*/
pub fn slice<'a>(s: &'a str, begin: uint, end: uint) -> &'a str {
assert!(is_char_boundary(s, begin));
assert!(is_char_boundary(s, end));
unsafe { raw::slice_bytes(s, begin, end) }
}
/// An iterator over the substrings of a string, separated by `sep`.
pub struct StrCharSplitIterator<'self,Sep> {
priv string: &'self str,
priv position: uint,
priv sep: Sep,
/// The number of splits remaining
priv count: uint,
/// Whether an empty string at the end is allowed
priv allow_trailing_empty: bool,
priv finished: bool,
priv only_ascii: bool
}
/// An iterator over the words of a string, separated by an sequence of whitespace
pub type WordIterator<'self> =
FilterIterator<'self, &'self str,
StrCharSplitIterator<'self, extern "Rust" fn(char) -> bool>>;
/// A separator for splitting a string character-wise
pub trait StrCharSplitSeparator {
/// Determine if the splitter should split at the given character
fn should_split(&self, char) -> bool;
/// Indicate if the splitter only uses ASCII characters, which
/// allows for a faster implementation.
fn only_ascii(&self) -> bool;
}
impl StrCharSplitSeparator for char {
#[inline(always)]
fn should_split(&self, c: char) -> bool { *self == c }
fn only_ascii(&self) -> bool { (*self as uint) < 128 }
}
impl<'self> StrCharSplitSeparator for &'self fn(char) -> bool {
#[inline(always)]
fn should_split(&self, c: char) -> bool { (*self)(c) }
fn only_ascii(&self) -> bool { false }
}
impl<'self> StrCharSplitSeparator for extern "Rust" fn(char) -> bool {
#[inline(always)]
fn should_split(&self, c: char) -> bool { (*self)(c) }
fn only_ascii(&self) -> bool { false }
}
impl<'self, Sep: StrCharSplitSeparator> Iterator<&'self str> for StrCharSplitIterator<'self, Sep> {
fn next(&mut self) -> Option<&'self str> {
if self.finished { return None }
let l = self.string.len();
let start = self.position;
if self.only_ascii {
// this gives a *huge* speed up for splitting on ASCII
// characters (e.g. '\n' or ' ')
while self.position < l && self.count > 0 {
let byte = self.string[self.position];
if self.sep.should_split(byte as char) {
let slice = unsafe { raw::slice_bytes(self.string, start, self.position) };
self.position += 1;
self.count -= 1;
return Some(slice);
}
self.position += 1;
}
} else {
while self.position < l && self.count > 0 {
let CharRange {ch, next} = char_range_at(self.string, self.position);
if self.sep.should_split(ch) {
let slice = unsafe { raw::slice_bytes(self.string, start, self.position) };
self.position = next;
self.count -= 1;
return Some(slice);
}
self.position = next;
}
}
self.finished = true;
if self.allow_trailing_empty || start < l {
Some(unsafe { raw::slice_bytes(self.string, start, l) })
} else {
None
}
}
}
// See Issue #1932 for why this is a naive search
fn iter_matches<'a,'b>(s: &'a str, sep: &'b str,
f: &fn(uint, uint) -> bool) -> bool {
let (sep_len, l) = (len(sep), len(s));
assert!(sep_len > 0u);
let mut (i, match_start, match_i) = (0u, 0u, 0u);
while i < l {
if s[i] == sep[match_i] {
if match_i == 0u { match_start = i; }
match_i += 1u;
// Found a match
if match_i == sep_len {
if !f(match_start, i + 1u) { return false; }
match_i = 0u;
}
i += 1u;
} else {
// Failed match, backtrack
if match_i > 0u {
match_i = 0u;
i = match_start + 1u;
} else {
i += 1u;
}
}
}
return true;
}
fn iter_between_matches<'a,'b>(s: &'a str,
sep: &'b str,
f: &fn(uint, uint) -> bool) -> bool {
let mut last_end = 0u;
for iter_matches(s, sep) |from, to| {
if !f(last_end, from) { return false; }
last_end = to;
}
return f(last_end, len(s));
}
/**
* Splits a string into a vector of the substrings separated by a given string
*
* # Example
*
* ~~~ {.rust}
* let mut v = ~[];
* for each_split_str(".XXX.YYY.", ".") |subs| { v.push(subs); }
* assert!(v == ["", "XXX", "YYY", ""]);
* ~~~
*/
pub fn each_split_str<'a,'b>(s: &'a str,
sep: &'b str,
it: &fn(&'a str) -> bool) -> bool {
for iter_between_matches(s, sep) |from, to| {
if !it( unsafe { raw::slice_bytes(s, from, to) } ) { return false; }
}
return true;
}
/**
* Splits the string `s` based on `sep`, yielding all splits to the iterator
* function provide
*
* # Example
*
* ~~~ {.rust}
* let mut v = ~[];
* for each_split_str(".XXX.YYY.", ".") |subs| { v.push(subs); }
* assert!(v == ["XXX", "YYY"]);
* ~~~
*/
pub fn each_split_str_nonempty<'a,'b>(s: &'a str,
sep: &'b str,
it: &fn(&'a str) -> bool) -> bool {
for iter_between_matches(s, sep) |from, to| {
if to > from {
if !it( unsafe { raw::slice_bytes(s, from, to) } ) { return false; }
}
}
return true;
}
/// Levenshtein Distance between two strings
pub fn levdistance(s: &str, t: &str) -> uint {
let slen = s.len();
let tlen = t.len();
if slen == 0 { return tlen; }
if tlen == 0 { return slen; }
let mut dcol = vec::from_fn(tlen + 1, |x| x);
for s.iter().enumerate().advance |(i, sc)| {
let mut current = i;
dcol[0] = current + 1;
for t.iter().enumerate().advance |(j, tc)| {
let next = dcol[j + 1];
if sc == tc {
dcol[j + 1] = current;
} else {
dcol[j + 1] = ::cmp::min(current, next);
dcol[j + 1] = ::cmp::min(dcol[j + 1], dcol[j]) + 1;
}
current = next;
}
}
return dcol[tlen];
}
/**
* Splits a string into substrings separated by LF ('\n')
* and/or CR LF ("\r\n")
*/
pub fn each_line_any<'a>(s: &'a str, it: &fn(&'a str) -> bool) -> bool {
for s.line_iter().advance |s| {
let l = s.len();
if l > 0u && s[l - 1u] == '\r' as u8 {
if !it( unsafe { raw::slice_bytes(s, 0, l - 1) } ) { return false; }
} else {
if !it( s ) { return false; }
}
}
return true;
}
/** Splits a string into substrings with possibly internal whitespace,
* each of them at most `lim` bytes long. The substrings have leading and trailing
* whitespace removed, and are only cut at whitespace boundaries.
*
* #Failure:
*
* Fails during iteration if the string contains a non-whitespace
* sequence longer than the limit.
*/
pub fn each_split_within<'a>(ss: &'a str,
lim: uint,
it: &fn(&'a str) -> bool) -> bool {
// Just for fun, let's write this as an state machine:
enum SplitWithinState {
A, // leading whitespace, initial state
B, // words
C, // internal and trailing whitespace
}
enum Whitespace {
Ws, // current char is whitespace
Cr // current char is not whitespace
}
enum LengthLimit {
UnderLim, // current char makes current substring still fit in limit
OverLim // current char makes current substring no longer fit in limit
}
let mut slice_start = 0;
let mut last_start = 0;
let mut last_end = 0;
let mut state = A;
let mut cont = true;
let slice: &fn() = || { cont = it(slice(ss, slice_start, last_end)) };
let machine: &fn((uint, char)) -> bool = |(i, c)| {
let whitespace = if char::is_whitespace(c) { Ws } else { Cr };
let limit = if (i - slice_start + 1) <= lim { UnderLim } else { OverLim };
state = match (state, whitespace, limit) {
(A, Ws, _) => { A }
(A, Cr, _) => { slice_start = i; last_start = i; B }
(B, Cr, UnderLim) => { B }
(B, Cr, OverLim) if (i - last_start + 1) > lim
=> fail!("word starting with %? longer than limit!",
self::slice(ss, last_start, i + 1)),
(B, Cr, OverLim) => { slice(); slice_start = last_start; B }
(B, Ws, UnderLim) => { last_end = i; C }
(B, Ws, OverLim) => { last_end = i; slice(); A }
(C, Cr, UnderLim) => { last_start = i; B }
(C, Cr, OverLim) => { slice(); slice_start = i; last_start = i; last_end = i; B }
(C, Ws, OverLim) => { slice(); A }
(C, Ws, UnderLim) => { C }
};
cont
};
ss.iter().enumerate().advance(machine);
// Let the automaton 'run out' by supplying trailing whitespace
let mut fake_i = ss.len();
while cont && match state { B | C => true, A => false } {
machine((fake_i, ' '));
fake_i += 1;
}
return cont;
}
/**
* Replace all occurrences of one string with another
*
* # Arguments
*
* * s - The string containing substrings to replace
* * from - The string to replace
* * to - The replacement string
*
* # Return value
*
* The original string with all occurances of `from` replaced with `to`
*/
pub fn replace(s: &str, from: &str, to: &str) -> ~str {
let mut (result, first) = (~"", true);
for iter_between_matches(s, from) |start, end| {
if first {
first = false;
} else {
push_str(&mut result, to);
}
push_str(&mut result, unsafe{raw::slice_bytes(s, start, end)});
}
result
}
/*
Section: Comparing strings
*/
/// Bytewise slice equality
#[cfg(not(test))]
#[lang="str_eq"]
#[inline]
pub fn eq_slice(a: &str, b: &str) -> bool {
do as_buf(a) |ap, alen| {
do as_buf(b) |bp, blen| {
if (alen != blen) { false }
else {
unsafe {
libc::memcmp(ap as *libc::c_void,
bp as *libc::c_void,
(alen - 1) as libc::size_t) == 0
}
}
}
}
}
#[cfg(test)]
#[inline]
pub fn eq_slice(a: &str, b: &str) -> bool {
do as_buf(a) |ap, alen| {
do as_buf(b) |bp, blen| {
if (alen != blen) { false }
else {
unsafe {
libc::memcmp(ap as *libc::c_void,
bp as *libc::c_void,
(alen - 1) as libc::size_t) == 0
}
}
}
}
}
/// Bytewise string equality
#[cfg(not(test))]
#[lang="uniq_str_eq"]
#[inline]
pub fn eq(a: &~str, b: &~str) -> bool {
eq_slice(*a, *b)
}
#[cfg(test)]
#[inline]
pub fn eq(a: &~str, b: &~str) -> bool {
eq_slice(*a, *b)
}
#[inline]
fn cmp(a: &str, b: &str) -> Ordering {
let low = uint::min(a.len(), b.len());
for uint::range(0, low) |idx| {
match a[idx].cmp(&b[idx]) {
Greater => return Greater,
Less => return Less,
Equal => ()
}
}
a.len().cmp(&b.len())
}
#[cfg(not(test))]
impl<'self> TotalOrd for &'self str {
#[inline]
fn cmp(&self, other: & &'self str) -> Ordering { cmp(*self, *other) }
}
#[cfg(not(test))]
impl TotalOrd for ~str {
#[inline]
fn cmp(&self, other: &~str) -> Ordering { cmp(*self, *other) }
}
#[cfg(not(test))]
impl TotalOrd for @str {
#[inline]
fn cmp(&self, other: &@str) -> Ordering { cmp(*self, *other) }
}
/// Bytewise slice less than
#[inline]
fn lt(a: &str, b: &str) -> bool {
let (a_len, b_len) = (a.len(), b.len());
let end = uint::min(a_len, b_len);
let mut i = 0;
while i < end {
let (c_a, c_b) = (a[i], b[i]);
if c_a < c_b { return true; }
if c_a > c_b { return false; }
i += 1;
}
return a_len < b_len;
}
/// Bytewise less than or equal
#[inline]
pub fn le(a: &str, b: &str) -> bool {
!lt(b, a)
}
/// Bytewise greater than or equal
#[inline]
fn ge(a: &str, b: &str) -> bool {
!lt(a, b)
}
/// Bytewise greater than
#[inline]
fn gt(a: &str, b: &str) -> bool {
!le(a, b)
}
#[cfg(not(test))]
impl<'self> Eq for &'self str {
#[inline(always)]
fn eq(&self, other: & &'self str) -> bool {
eq_slice((*self), (*other))
}
#[inline(always)]
fn ne(&self, other: & &'self str) -> bool { !(*self).eq(other) }
}
#[cfg(not(test))]
impl Eq for ~str {
#[inline(always)]
fn eq(&self, other: &~str) -> bool {
eq_slice((*self), (*other))
}
#[inline(always)]
fn ne(&self, other: &~str) -> bool { !(*self).eq(other) }
}
#[cfg(not(test))]
impl Eq for @str {
#[inline(always)]
fn eq(&self, other: &@str) -> bool {
eq_slice((*self), (*other))
}
#[inline(always)]
fn ne(&self, other: &@str) -> bool { !(*self).eq(other) }
}
#[cfg(not(test))]
impl<'self> TotalEq for &'self str {
#[inline(always)]
fn equals(&self, other: & &'self str) -> bool {
eq_slice((*self), (*other))
}
}
#[cfg(not(test))]
impl TotalEq for ~str {
#[inline(always)]
fn equals(&self, other: &~str) -> bool {
eq_slice((*self), (*other))
}
}
#[cfg(not(test))]
impl TotalEq for @str {
#[inline(always)]
fn equals(&self, other: &@str) -> bool {
eq_slice((*self), (*other))
}
}
#[cfg(not(test))]
impl Ord for ~str {
#[inline(always)]
fn lt(&self, other: &~str) -> bool { lt((*self), (*other)) }
#[inline(always)]
fn le(&self, other: &~str) -> bool { le((*self), (*other)) }
#[inline(always)]
fn ge(&self, other: &~str) -> bool { ge((*self), (*other)) }
#[inline(always)]
fn gt(&self, other: &~str) -> bool { gt((*self), (*other)) }
}
#[cfg(not(test))]
impl<'self> Ord for &'self str {
#[inline(always)]
fn lt(&self, other: & &'self str) -> bool { lt((*self), (*other)) }
#[inline(always)]
fn le(&self, other: & &'self str) -> bool { le((*self), (*other)) }
#[inline(always)]
fn ge(&self, other: & &'self str) -> bool { ge((*self), (*other)) }
#[inline(always)]
fn gt(&self, other: & &'self str) -> bool { gt((*self), (*other)) }
}
#[cfg(not(test))]
impl Ord for @str {
#[inline(always)]
fn lt(&self, other: &@str) -> bool { lt((*self), (*other)) }
#[inline(always)]
fn le(&self, other: &@str) -> bool { le((*self), (*other)) }
#[inline(always)]
fn ge(&self, other: &@str) -> bool { ge((*self), (*other)) }
#[inline(always)]
fn gt(&self, other: &@str) -> bool { gt((*self), (*other)) }
}
#[cfg(not(test))]
impl<'self> Equiv<~str> for &'self str {
#[inline(always)]
fn equiv(&self, other: &~str) -> bool { eq_slice(*self, *other) }
}
/*
Section: Iterating through strings
*/
/**
* Return true if a predicate matches all characters or if the string
* contains no characters
*/
pub fn all(s: &str, it: &fn(char) -> bool) -> bool {
all_between(s, 0u, len(s), it)
}
/**
* Return true if a predicate matches any character (and false if it
* matches none or there are no characters)
*/
pub fn any(ss: &str, pred: &fn(char) -> bool) -> bool {
!all(ss, |cc| !pred(cc))
}
/// Apply a function to each character
pub fn map(ss: &str, ff: &fn(char) -> char) -> ~str {
let mut result = ~"";
reserve(&mut result, len(ss));
for ss.iter().advance |cc| {
str::push_char(&mut result, ff(cc));
}
result
}
/*
Section: Searching
*/
/**
* Returns the byte index of the first matching character
*
* # Arguments
*
* * `s` - The string to search
* * `c` - The character to search for
*
* # Return value
*
* An `option` containing the byte index of the first matching character
* or `none` if there is no match
*/
pub fn find_char(s: &str, c: char) -> Option<uint> {
find_char_between(s, c, 0u, len(s))
}
/**
* Returns the byte index of the first matching character beginning
* from a given byte offset
*
* # Arguments
*
* * `s` - The string to search
* * `c` - The character to search for
* * `start` - The byte index to begin searching at, inclusive
*
* # Return value
*
* An `option` containing the byte index of the first matching character
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `len(s)`. `start` must be the
* index of a character boundary, as defined by `is_char_boundary`.
*/
pub fn find_char_from(s: &str, c: char, start: uint) -> Option<uint> {
find_char_between(s, c, start, len(s))
}
/**
* Returns the byte index of the first matching character within a given range
*
* # Arguments
*
* * `s` - The string to search
* * `c` - The character to search for
* * `start` - The byte index to begin searching at, inclusive
* * `end` - The byte index to end searching at, exclusive
*
* # Return value
*
* An `option` containing the byte index of the first matching character
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `end` and `end` must be less than
* or equal to `len(s)`. `start` must be the index of a character boundary,
* as defined by `is_char_boundary`.
*/
pub fn find_char_between(s: &str, c: char, start: uint, end: uint)
-> Option<uint> {
if c < 128u as char {
assert!(start <= end);
assert!(end <= len(s));
let mut i = start;
let b = c as u8;
while i < end {
if s[i] == b { return Some(i); }
i += 1u;
}
return None;
} else {
find_between(s, start, end, |x| x == c)
}
}
/**
* Returns the byte index of the last matching character
*
* # Arguments
*
* * `s` - The string to search
* * `c` - The character to search for
*
* # Return value
*
* An `option` containing the byte index of the last matching character
* or `none` if there is no match
*/
pub fn rfind_char(s: &str, c: char) -> Option<uint> {
rfind_char_between(s, c, len(s), 0u)
}
/**
* Returns the byte index of the last matching character beginning
* from a given byte offset
*
* # Arguments
*
* * `s` - The string to search
* * `c` - The character to search for
* * `start` - The byte index to begin searching at, exclusive
*
* # Return value
*
* An `option` containing the byte index of the last matching character
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `len(s)`. `start` must be
* the index of a character boundary, as defined by `is_char_boundary`.
*/
pub fn rfind_char_from(s: &str, c: char, start: uint) -> Option<uint> {
rfind_char_between(s, c, start, 0u)
}
/**
* Returns the byte index of the last matching character within a given range
*
* # Arguments
*
* * `s` - The string to search
* * `c` - The character to search for
* * `start` - The byte index to begin searching at, exclusive
* * `end` - The byte index to end searching at, inclusive
*
* # Return value
*
* An `option` containing the byte index of the last matching character
* or `none` if there is no match
*
* # Failure
*
* `end` must be less than or equal to `start` and `start` must be less than
* or equal to `len(s)`. `start` must be the index of a character boundary,
* as defined by `is_char_boundary`.
*/
pub fn rfind_char_between(s: &str, c: char, start: uint, end: uint) -> Option<uint> {
if c < 128u as char {
assert!(start >= end);
assert!(start <= len(s));
let mut i = start;
let b = c as u8;
while i > end {
i -= 1u;
if s[i] == b { return Some(i); }
}
return None;
} else {
rfind_between(s, start, end, |x| x == c)
}
}
/**
* Returns the byte index of the first character that satisfies
* the given predicate
*
* # Arguments
*
* * `s` - The string to search
* * `f` - The predicate to satisfy
*
* # Return value
*
* An `option` containing the byte index of the first matching character
* or `none` if there is no match
*/
pub fn find(s: &str, f: &fn(char) -> bool) -> Option<uint> {
find_between(s, 0u, len(s), f)
}
/**
* Returns the byte index of the first character that satisfies
* the given predicate, beginning from a given byte offset
*
* # Arguments
*
* * `s` - The string to search
* * `start` - The byte index to begin searching at, inclusive
* * `f` - The predicate to satisfy
*
* # Return value
*
* An `option` containing the byte index of the first matching charactor
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `len(s)`. `start` must be the
* index of a character boundary, as defined by `is_char_boundary`.
*/
pub fn find_from(s: &str, start: uint, f: &fn(char)
-> bool) -> Option<uint> {
find_between(s, start, len(s), f)
}
/**
* Returns the byte index of the first character that satisfies
* the given predicate, within a given range
*
* # Arguments
*
* * `s` - The string to search
* * `start` - The byte index to begin searching at, inclusive
* * `end` - The byte index to end searching at, exclusive
* * `f` - The predicate to satisfy
*
* # Return value
*
* An `option` containing the byte index of the first matching character
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `end` and `end` must be less than
* or equal to `len(s)`. `start` must be the index of a character
* boundary, as defined by `is_char_boundary`.
*/
pub fn find_between(s: &str, start: uint, end: uint, f: &fn(char) -> bool) -> Option<uint> {
assert!(start <= end);
assert!(end <= len(s));
assert!(is_char_boundary(s, start));
let mut i = start;
while i < end {
let CharRange {ch, next} = char_range_at(s, i);
if f(ch) { return Some(i); }
i = next;
}
return None;
}
/**
* Returns the byte index of the last character that satisfies
* the given predicate
*
* # Arguments
*
* * `s` - The string to search
* * `f` - The predicate to satisfy
*
* # Return value
*
* An option containing the byte index of the last matching character
* or `none` if there is no match
*/
pub fn rfind(s: &str, f: &fn(char) -> bool) -> Option<uint> {
rfind_between(s, len(s), 0u, f)
}
/**
* Returns the byte index of the last character that satisfies
* the given predicate, beginning from a given byte offset
*
* # Arguments
*
* * `s` - The string to search
* * `start` - The byte index to begin searching at, exclusive
* * `f` - The predicate to satisfy
*
* # Return value
*
* An `option` containing the byte index of the last matching character
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `len(s)', `start` must be the
* index of a character boundary, as defined by `is_char_boundary`
*/
pub fn rfind_from(s: &str, start: uint, f: &fn(char) -> bool) -> Option<uint> {
rfind_between(s, start, 0u, f)
}
/**
* Returns the byte index of the last character that satisfies
* the given predicate, within a given range
*
* # Arguments
*
* * `s` - The string to search
* * `start` - The byte index to begin searching at, exclusive
* * `end` - The byte index to end searching at, inclusive
* * `f` - The predicate to satisfy
*
* # Return value
*
* An `option` containing the byte index of the last matching character
* or `none` if there is no match
*
* # Failure
*
* `end` must be less than or equal to `start` and `start` must be less
* than or equal to `len(s)`. `start` must be the index of a character
* boundary, as defined by `is_char_boundary`
*/
pub fn rfind_between(s: &str, start: uint, end: uint, f: &fn(char) -> bool) -> Option<uint> {
assert!(start >= end);
assert!(start <= len(s));
assert!(is_char_boundary(s, start));
let mut i = start;
while i > end {
let CharRange {ch, next: prev} = char_range_at_reverse(s, i);
if f(ch) { return Some(prev); }
i = prev;
}
return None;
}
// Utility used by various searching functions
fn match_at<'a,'b>(haystack: &'a str, needle: &'b str, at: uint) -> bool {
let mut i = at;
for needle.bytes_iter().advance |c| { if haystack[i] != c { return false; } i += 1u; }
return true;
}
/**
* Returns the byte index of the first matching substring
*
* # Arguments
*
* * `haystack` - The string to search
* * `needle` - The string to search for
*
* # Return value
*
* An `option` containing the byte index of the first matching substring
* or `none` if there is no match
*/
pub fn find_str<'a,'b>(haystack: &'a str, needle: &'b str) -> Option<uint> {
find_str_between(haystack, needle, 0u, len(haystack))
}
/**
* Returns the byte index of the first matching substring beginning
* from a given byte offset
*
* # Arguments
*
* * `haystack` - The string to search
* * `needle` - The string to search for
* * `start` - The byte index to begin searching at, inclusive
*
* # Return value
*
* An `option` containing the byte index of the last matching character
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `len(s)`
*/
pub fn find_str_from<'a,'b>(haystack: &'a str,
needle: &'b str,
start: uint)
-> Option<uint> {
find_str_between(haystack, needle, start, len(haystack))
}
/**
* Returns the byte index of the first matching substring within a given range
*
* # Arguments
*
* * `haystack` - The string to search
* * `needle` - The string to search for
* * `start` - The byte index to begin searching at, inclusive
* * `end` - The byte index to end searching at, exclusive
*
* # Return value
*
* An `option` containing the byte index of the first matching character
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `end` and `end` must be less than
* or equal to `len(s)`.
*/
pub fn find_str_between<'a,'b>(haystack: &'a str,
needle: &'b str,
start: uint,
end:uint)
-> Option<uint> {
// See Issue #1932 for why this is a naive search
assert!(end <= len(haystack));
let needle_len = len(needle);
if needle_len == 0u { return Some(start); }
if needle_len > end { return None; }
let mut i = start;
let e = end - needle_len;
while i <= e {
if match_at(haystack, needle, i) { return Some(i); }
i += 1u;
}
return None;
}
/**
* Returns true if one string contains another
*
* # Arguments
*
* * haystack - The string to look in
* * needle - The string to look for
*/
pub fn contains<'a,'b>(haystack: &'a str, needle: &'b str) -> bool {
find_str(haystack, needle).is_some()
}
/**
* Returns true if a string contains a char.
*
* # Arguments
*
* * haystack - The string to look in
* * needle - The char to look for
*/
pub fn contains_char(haystack: &str, needle: char) -> bool {
find_char(haystack, needle).is_some()
}
/**
* Returns true if one string starts with another
*
* # Arguments
*
* * haystack - The string to look in
* * needle - The string to look for
*/
pub fn starts_with<'a,'b>(haystack: &'a str, needle: &'b str) -> bool {
let (haystack_len, needle_len) = (len(haystack), len(needle));
if needle_len == 0u { true }
else if needle_len > haystack_len { false }
else { match_at(haystack, needle, 0u) }
}
/**
* Returns true if one string ends with another
*
* # Arguments
*
* * haystack - The string to look in
* * needle - The string to look for
*/
pub fn ends_with<'a,'b>(haystack: &'a str, needle: &'b str) -> bool {
let (haystack_len, needle_len) = (len(haystack), len(needle));
if needle_len == 0u { true }
else if needle_len > haystack_len { false }
else { match_at(haystack, needle, haystack_len - needle_len) }
}
/*
Section: String properties
*/
/// Returns true if the string has length 0
#[inline(always)]
pub fn is_empty(s: &str) -> bool { len(s) == 0u }
/**
* Returns true if the string contains only whitespace
*
* Whitespace characters are determined by `char::is_whitespace`
*/
pub fn is_whitespace(s: &str) -> bool {
return all(s, char::is_whitespace);
}
/**
* Returns true if the string contains only alphanumerics
*
* Alphanumeric characters are determined by `char::is_alphanumeric`
*/
fn is_alphanumeric(s: &str) -> bool {
return all(s, char::is_alphanumeric);
}
/// Returns the string length/size in bytes not counting the null terminator
#[inline(always)]
pub fn len(s: &str) -> uint {
do as_buf(s) |_p, n| { n - 1u }
}
/// Returns the number of characters that a string holds
#[inline(always)]
pub fn char_len(s: &str) -> uint { count_chars(s, 0u, len(s)) }
/*
Section: Misc
*/
/// Determines if a vector of bytes contains valid UTF-8
pub fn is_utf8(v: &const [u8]) -> bool {
let mut i = 0u;
let total = v.len();
while i < total {
let mut chsize = utf8_char_width(v[i]);
if chsize == 0u { return false; }
if i + chsize > total { return false; }
i += 1u;
while chsize > 1u {
if v[i] & 192u8 != tag_cont_u8 { return false; }
i += 1u;
chsize -= 1u;
}
}
return true;
}
/// Determines if a vector of `u16` contains valid UTF-16
pub fn is_utf16(v: &[u16]) -> bool {
let len = v.len();
let mut i = 0u;
while (i < len) {
let u = v[i];
if u <= 0xD7FF_u16 || u >= 0xE000_u16 {
i += 1u;
} else {
if i+1u < len { return false; }
let u2 = v[i+1u];
if u < 0xD7FF_u16 || u > 0xDBFF_u16 { return false; }
if u2 < 0xDC00_u16 || u2 > 0xDFFF_u16 { return false; }
i += 2u;
}
}
return true;
}
/// Converts to a vector of `u16` encoded as UTF-16
pub fn to_utf16(s: &str) -> ~[u16] {
let mut u = ~[];
for s.iter().advance |ch| {
// Arithmetic with u32 literals is easier on the eyes than chars.
let mut ch = ch as u32;
if (ch & 0xFFFF_u32) == ch {
// The BMP falls through (assuming non-surrogate, as it
// should)
assert!(ch <= 0xD7FF_u32 || ch >= 0xE000_u32);
u.push(ch as u16)
} else {
// Supplementary planes break into surrogates.
assert!(ch >= 0x1_0000_u32 && ch <= 0x10_FFFF_u32);
ch -= 0x1_0000_u32;
let w1 = 0xD800_u16 | ((ch >> 10) as u16);
let w2 = 0xDC00_u16 | ((ch as u16) & 0x3FF_u16);
u.push_all([w1, w2])
}
}
u
}
/// Iterates over the utf-16 characters in the specified slice, yielding each
/// decoded unicode character to the function provided.
///
/// # Failures
///
/// * Fails on invalid utf-16 data
pub fn utf16_chars(v: &[u16], f: &fn(char)) {
let len = v.len();
let mut i = 0u;
while (i < len && v[i] != 0u16) {
let u = v[i];
if u <= 0xD7FF_u16 || u >= 0xE000_u16 {
f(u as char);
i += 1u;
} else {
let u2 = v[i+1u];
assert!(u >= 0xD800_u16 && u <= 0xDBFF_u16);
assert!(u2 >= 0xDC00_u16 && u2 <= 0xDFFF_u16);
let mut c = (u - 0xD800_u16) as char;
c = c << 10;
c |= (u2 - 0xDC00_u16) as char;
c |= 0x1_0000_u32 as char;
f(c);
i += 2u;
}
}
}
/**
* Allocates a new string from the utf-16 slice provided
*/
pub fn from_utf16(v: &[u16]) -> ~str {
let mut buf = ~"";
reserve(&mut buf, v.len());
utf16_chars(v, |ch| push_char(&mut buf, ch));
buf
}
/**
* Allocates a new string with the specified capacity. The string returned is
* the empty string, but has capacity for much more.
*/
pub fn with_capacity(capacity: uint) -> ~str {
let mut buf = ~"";
reserve(&mut buf, capacity);
buf
}
/**
* As char_len but for a slice of a string
*
* # Arguments
*
* * s - A valid string
* * start - The position inside `s` where to start counting in bytes
* * end - The position where to stop counting
*
* # Return value
*
* The number of Unicode characters in `s` between the given indices.
*/
pub fn count_chars(s: &str, start: uint, end: uint) -> uint {
assert!(is_char_boundary(s, start));
assert!(is_char_boundary(s, end));
let mut (i, len) = (start, 0u);
while i < end {
let next = char_range_at(s, i).next;
len += 1u;
i = next;
}
return len;
}
/// Counts the number of bytes taken by the first `n` chars in `s`
/// starting from `start`.
pub fn count_bytes<'b>(s: &'b str, start: uint, n: uint) -> uint {
assert!(is_char_boundary(s, start));
let mut (end, cnt) = (start, n);
let l = len(s);
while cnt > 0u {
assert!(end < l);
let next = char_range_at(s, end).next;
cnt -= 1u;
end = next;
}
end - start
}
/// Given a first byte, determine how many bytes are in this UTF-8 character
pub fn utf8_char_width(b: u8) -> uint {
let byte: uint = b as uint;
if byte < 128u { return 1u; }
// Not a valid start byte
if byte < 192u { return 0u; }
if byte < 224u { return 2u; }
if byte < 240u { return 3u; }
if byte < 248u { return 4u; }
if byte < 252u { return 5u; }
return 6u;
}
/**
* Returns false if the index points into the middle of a multi-byte
* character sequence.
*/
pub fn is_char_boundary(s: &str, index: uint) -> bool {
if index == len(s) { return true; }
let b = s[index];
return b < 128u8 || b >= 192u8;
}
/**
* Pluck a character out of a string and return the index of the next
* character.
*
* This function can be used to iterate over the unicode characters of a
* string.
*
* # Example
*
* ~~~ {.rust}
* let s = "中华Việt Nam";
* let i = 0u;
* while i < str::len(s) {
* let CharRange {ch, next} = str::char_range_at(s, i);
* std::io::println(fmt!("%u: %c",i,ch));
* i = next;
* }
* ~~~
*
* # Example output
*
* ~~~
* 0: 中
* 3: 华
* 6: V
* 7: i
* 8: ệ
* 11: t
* 12:
* 13: N
* 14: a
* 15: m
* ~~~
*
* # Arguments
*
* * s - The string
* * i - The byte offset of the char to extract
*
* # Return value
*
* A record {ch: char, next: uint} containing the char value and the byte
* index of the next unicode character.
*
* # Failure
*
* If `i` is greater than or equal to the length of the string.
* If `i` is not the index of the beginning of a valid UTF-8 character.
*/
pub fn char_range_at(s: &str, i: uint) -> CharRange {
let b0 = s[i];
let w = utf8_char_width(b0);
assert!((w != 0u));
if w == 1u { return CharRange {ch: b0 as char, next: i + 1u}; }
let mut val = 0u;
let end = i + w;
let mut i = i + 1u;
while i < end {
let byte = s[i];
assert_eq!(byte & 192u8, tag_cont_u8);
val <<= 6u;
val += (byte & 63u8) as uint;
i += 1u;
}
// Clunky way to get the right bits from the first byte. Uses two shifts,
// the first to clip off the marker bits at the left of the byte, and then
// a second (as uint) to get it to the right position.
val += ((b0 << ((w + 1u) as u8)) as uint) << ((w - 1u) * 6u - w - 1u);
return CharRange {ch: val as char, next: i};
}
/// Plucks the character starting at the `i`th byte of a string
pub fn char_at(s: &str, i: uint) -> char {
return char_range_at(s, i).ch;
}
#[allow(missing_doc)]
pub struct CharRange {
ch: char,
next: uint
}
/**
* Given a byte position and a str, return the previous char and its position.
*
* This function can be used to iterate over a unicode string in reverse.
*
* Returns 0 for next index if called on start index 0.
*/
pub fn char_range_at_reverse(ss: &str, start: uint) -> CharRange {
let mut prev = start;
// while there is a previous byte == 10......
while prev > 0u && ss[prev - 1u] & 192u8 == tag_cont_u8 {
prev -= 1u;
}
// now refer to the initial byte of previous char
if prev > 0u {
prev -= 1u;
} else {
prev = 0u;
}
let ch = char_at(ss, prev);
return CharRange {ch:ch, next:prev};
}
/// Plucks the character ending at the `i`th byte of a string
pub fn char_at_reverse(s: &str, i: uint) -> char {
char_range_at_reverse(s, i).ch
}
/**
* Loop through a substring, char by char
*
* # Safety note
*
* * This function does not check whether the substring is valid.
* * This function fails if `start` or `end` do not
* represent valid positions inside `s`
*
* # Arguments
*
* * s - A string to traverse. It may be empty.
* * start - The byte offset at which to start in the string.
* * end - The end of the range to traverse
* * it - A block to execute with each consecutive character of `s`.
* Return `true` to continue, `false` to stop.
*
* # Return value
*
* `true` If execution proceeded correctly, `false` if it was interrupted,
* that is if `it` returned `false` at any point.
*/
pub fn all_between(s: &str, start: uint, end: uint,
it: &fn(char) -> bool) -> bool {
assert!(is_char_boundary(s, start));
let mut i = start;
while i < end {
let CharRange {ch, next} = char_range_at(s, i);
if !it(ch) { return false; }
i = next;
}
return true;
}
/**
* Loop through a substring, char by char
*
* # Safety note
*
* * This function does not check whether the substring is valid.
* * This function fails if `start` or `end` do not
* represent valid positions inside `s`
*
* # Arguments
*
* * s - A string to traverse. It may be empty.
* * start - The byte offset at which to start in the string.
* * end - The end of the range to traverse
* * it - A block to execute with each consecutive character of `s`.
* Return `true` to continue, `false` to stop.
*
* # Return value
*
* `true` if `it` returns `true` for any character
*/
pub fn any_between(s: &str, start: uint, end: uint,
it: &fn(char) -> bool) -> bool {
!all_between(s, start, end, |c| !it(c))
}
// UTF-8 tags and ranges
static tag_cont_u8: u8 = 128u8;
static tag_cont: uint = 128u;
static max_one_b: uint = 128u;
static tag_two_b: uint = 192u;
static max_two_b: uint = 2048u;
static tag_three_b: uint = 224u;
static max_three_b: uint = 65536u;
static tag_four_b: uint = 240u;
static max_four_b: uint = 2097152u;
static tag_five_b: uint = 248u;
static max_five_b: uint = 67108864u;
static tag_six_b: uint = 252u;
/**
* Work with the byte buffer of a string.
*
* Allows for unsafe manipulation of strings, which is useful for foreign
* interop.
*
* # Example
*
* ~~~ {.rust}
* let i = str::as_bytes("Hello World") { |bytes| bytes.len() };
* ~~~
*/
#[inline]
pub fn as_bytes<T>(s: &const ~str, f: &fn(&~[u8]) -> T) -> T {
unsafe {
let v: *~[u8] = cast::transmute(copy s);
f(&*v)
}
}
/**
* Work with the byte buffer of a string as a byte slice.
*
* The byte slice does not include the null terminator.
*/
pub fn as_bytes_slice<'a>(s: &'a str) -> &'a [u8] {
unsafe {
let (ptr, len): (*u8, uint) = ::cast::transmute(s);
let outgoing_tuple: (*u8, uint) = (ptr, len - 1);
return ::cast::transmute(outgoing_tuple);
}
}
/**
* A dummy trait to hold all the utility methods that we implement on strings.
*/
pub trait StrUtil {
/**
* Work with the byte buffer of a string as a null-terminated C string.
*
* Allows for unsafe manipulation of strings, which is useful for foreign
* interop. This is similar to `str::as_buf`, but guarantees null-termination.
* If the given slice is not already null-terminated, this function will
* allocate a temporary, copy the slice, null terminate it, and pass
* that instead.
*
* # Example
*
* ~~~ {.rust}
* let s = "PATH".as_c_str(|path| libc::getenv(path));
* ~~~
*/
fn as_c_str<T>(self, f: &fn(*libc::c_char) -> T) -> T;
}
impl<'self> StrUtil for &'self str {
#[inline]
fn as_c_str<T>(self, f: &fn(*libc::c_char) -> T) -> T {
do as_buf(self) |buf, len| {
// NB: len includes the trailing null.
assert!(len > 0);
if unsafe { *(ptr::offset(buf,len-1)) != 0 } {
to_owned(self).as_c_str(f)
} else {
f(buf as *libc::c_char)
}
}
}
}
/**
* Deprecated. Use the `as_c_str` method on strings instead.
*/
#[inline(always)]
pub fn as_c_str<T>(s: &str, f: &fn(*libc::c_char) -> T) -> T {
s.as_c_str(f)
}
/**
* Work with the byte buffer and length of a slice.
*
* The given length is one byte longer than the 'official' indexable
* length of the string. This is to permit probing the byte past the
* indexable area for a null byte, as is the case in slices pointing
* to full strings, or suffixes of them.
*/
#[inline(always)]
pub fn as_buf<T>(s: &str, f: &fn(*u8, uint) -> T) -> T {
unsafe {
let v : *(*u8,uint) = transmute(&s);
let (buf,len) = *v;
f(buf, len)
}
}
/**
* Returns the byte offset of an inner slice relative to an enclosing outer slice
*
* # Example
*
* ~~~ {.rust}
* let string = "a\nb\nc";
* let mut lines = ~[];
* for string.line_iter().advance |line| { lines.push(line) }
*
* assert!(subslice_offset(string, lines[0]) == 0); // &"a"
* assert!(subslice_offset(string, lines[1]) == 2); // &"b"
* assert!(subslice_offset(string, lines[2]) == 4); // &"c"
* ~~~
*/
#[inline(always)]
pub fn subslice_offset(outer: &str, inner: &str) -> uint {
do as_buf(outer) |a, a_len| {
do as_buf(inner) |b, b_len| {
let a_start: uint;
let a_end: uint;
let b_start: uint;
let b_end: uint;
unsafe {
a_start = cast::transmute(a); a_end = a_len + cast::transmute(a);
b_start = cast::transmute(b); b_end = b_len + cast::transmute(b);
}
assert!(a_start <= b_start);
assert!(b_end <= a_end);
b_start - a_start
}
}
}
/**
* Reserves capacity for exactly `n` bytes in the given string, not including
* the null terminator.
*
* Assuming single-byte characters, the resulting string will be large
* enough to hold a string of length `n`. To account for the null terminator,
* the underlying buffer will have the size `n` + 1.
*
* If the capacity for `s` is already equal to or greater than the requested
* capacity, then no action is taken.
*
* # Arguments
*
* * s - A string
* * n - The number of bytes to reserve space for
*/
#[inline(always)]
pub fn reserve(s: &mut ~str, n: uint) {
unsafe {
let v: *mut ~[u8] = cast::transmute(s);
vec::reserve(&mut *v, n + 1);
}
}
/**
* Reserves capacity for at least `n` bytes in the given string, not including
* the null terminator.
*
* Assuming single-byte characters, the resulting string will be large
* enough to hold a string of length `n`. To account for the null terminator,
* the underlying buffer will have the size `n` + 1.
*
* This function will over-allocate in order to amortize the allocation costs
* in scenarios where the caller may need to repeatedly reserve additional
* space.
*
* If the capacity for `s` is already equal to or greater than the requested
* capacity, then no action is taken.
*
* # Arguments
*
* * s - A string
* * n - The number of bytes to reserve space for
*/
#[inline(always)]
pub fn reserve_at_least(s: &mut ~str, n: uint) {
reserve(s, uint::next_power_of_two(n + 1u) - 1u)
}
/**
* Returns the number of single-byte characters the string can hold without
* reallocating
*/
pub fn capacity(s: &const ~str) -> uint {
do as_bytes(s) |buf| {
let vcap = vec::capacity(buf);
assert!(vcap > 0u);
vcap - 1u
}
}
/// Escape each char in `s` with char::escape_default.
pub fn escape_default(s: &str) -> ~str {
let mut out: ~str = ~"";
reserve_at_least(&mut out, str::len(s));
for s.iter().advance |c| {
push_str(&mut out, char::escape_default(c));
}
out
}
/// Escape each char in `s` with char::escape_unicode.
pub fn escape_unicode(s: &str) -> ~str {
let mut out: ~str = ~"";
reserve_at_least(&mut out, str::len(s));
for s.iter().advance |c| {
push_str(&mut out, char::escape_unicode(c));
}
out
}
/// Unsafe operations
pub mod raw {
use cast;
use libc;
use ptr;
use str::raw;
use str::{as_buf, is_utf8, len, reserve_at_least};
use vec;
/// Create a Rust string from a null-terminated *u8 buffer
pub unsafe fn from_buf(buf: *u8) -> ~str {
let mut (curr, i) = (buf, 0u);
while *curr != 0u8 {
i += 1u;
curr = ptr::offset(buf, i);
}
return from_buf_len(buf, i);
}
/// Create a Rust string from a *u8 buffer of the given length
pub unsafe fn from_buf_len(buf: *const u8, len: uint) -> ~str {
let mut v: ~[u8] = vec::with_capacity(len + 1);
vec::as_mut_buf(v, |vbuf, _len| {
ptr::copy_memory(vbuf, buf as *u8, len)
});
vec::raw::set_len(&mut v, len);
v.push(0u8);
assert!(is_utf8(v));
return ::cast::transmute(v);
}
/// Create a Rust string from a null-terminated C string
pub unsafe fn from_c_str(c_str: *libc::c_char) -> ~str {
from_buf(::cast::transmute(c_str))
}
/// Create a Rust string from a `*c_char` buffer of the given length
pub unsafe fn from_c_str_len(c_str: *libc::c_char, len: uint) -> ~str {
from_buf_len(::cast::transmute(c_str), len)
}
/// Converts a vector of bytes to a new owned string.
pub unsafe fn from_bytes(v: &const [u8]) -> ~str {
do vec::as_const_buf(v) |buf, len| {
from_buf_len(buf, len)
}
}
/// Converts a vector of bytes to a string.
/// The byte slice needs to contain valid utf8 and needs to be one byte longer than
/// the string, if possible ending in a 0 byte.
pub unsafe fn from_bytes_with_null<'a>(v: &'a [u8]) -> &'a str {
cast::transmute(v)
}
/// Converts a byte to a string.
pub unsafe fn from_byte(u: u8) -> ~str { raw::from_bytes([u]) }
/// Form a slice from a *u8 buffer of the given length without copying.
pub unsafe fn buf_as_slice<T>(buf: *u8, len: uint,
f: &fn(v: &str) -> T) -> T {
let v = (buf, len + 1);
assert!(is_utf8(::cast::transmute(v)));
f(::cast::transmute(v))
}
/**
* Takes a bytewise (not UTF-8) slice from a string.
*
* Returns the substring from [`begin`..`end`).
*
* # Failure
*
* If begin is greater than end.
* If end is greater than the length of the string.
*/
pub unsafe fn slice_bytes_owned(s: &str, begin: uint, end: uint) -> ~str {
do as_buf(s) |sbuf, n| {
assert!((begin <= end));
assert!((end <= n));
let mut v = vec::with_capacity(end - begin + 1u);
do vec::as_imm_buf(v) |vbuf, _vlen| {
let vbuf = ::cast::transmute_mut_unsafe(vbuf);
let src = ptr::offset(sbuf, begin);
ptr::copy_memory(vbuf, src, end - begin);
}
vec::raw::set_len(&mut v, end - begin);
v.push(0u8);
::cast::transmute(v)
}
}
/**
* Takes a bytewise (not UTF-8) slice from a string.
*
* Returns the substring from [`begin`..`end`).
*
* # Failure
*
* If begin is greater than end.
* If end is greater than the length of the string.
*/
#[inline]
pub unsafe fn slice_bytes(s: &str, begin: uint, end: uint) -> &str {
do as_buf(s) |sbuf, n| {
assert!((begin <= end));
assert!((end <= n));
let tuple = (ptr::offset(sbuf, begin), end - begin + 1);
::cast::transmute(tuple)
}
}
/// Appends a byte to a string. (Not UTF-8 safe).
pub unsafe fn push_byte(s: &mut ~str, b: u8) {
let new_len = s.len() + 1;
reserve_at_least(&mut *s, new_len);
do as_buf(*s) |buf, len| {
let buf: *mut u8 = ::cast::transmute(buf);
*ptr::mut_offset(buf, len) = b;
}
set_len(&mut *s, new_len);
}
/// Appends a vector of bytes to a string. (Not UTF-8 safe).
unsafe fn push_bytes(s: &mut ~str, bytes: &[u8]) {
let new_len = s.len() + bytes.len();
reserve_at_least(&mut *s, new_len);
for bytes.each |byte| { push_byte(&mut *s, *byte); }
}
/// Removes the last byte from a string and returns it. (Not UTF-8 safe).
pub unsafe fn pop_byte(s: &mut ~str) -> u8 {
let len = len(*s);
assert!((len > 0u));
let b = s[len - 1u];
set_len(s, len - 1u);
return b;
}
/// Removes the first byte from a string and returns it. (Not UTF-8 safe).
pub unsafe fn shift_byte(s: &mut ~str) -> u8 {
let len = len(*s);
assert!((len > 0u));
let b = s[0];
*s = raw::slice_bytes_owned(*s, 1u, len);
return b;
}
/// Sets the length of the string and adds the null terminator
#[inline]
pub unsafe fn set_len(v: &mut ~str, new_len: uint) {
let v: **mut vec::raw::VecRepr = cast::transmute(v);
let repr: *mut vec::raw::VecRepr = *v;
(*repr).unboxed.fill = new_len + 1u;
let null = ptr::mut_offset(cast::transmute(&((*repr).unboxed.data)),
new_len);
*null = 0u8;
}
#[test]
fn test_from_buf_len() {
unsafe {
let a = ~[65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 0u8];
let b = vec::raw::to_ptr(a);
let c = from_buf_len(b, 3u);
assert_eq!(c, ~"AAA");
}
}
}
#[cfg(not(test))]
pub mod traits {
use ops::Add;
use str::append;
impl<'self> Add<&'self str,~str> for ~str {
#[inline(always)]
fn add(&self, rhs: & &'self str) -> ~str {
append(copy *self, (*rhs))
}
}
}
#[cfg(test)]
pub mod traits {}
#[allow(missing_doc)]
pub trait StrSlice<'self> {
fn all(&self, it: &fn(char) -> bool) -> bool;
fn any(&self, it: &fn(char) -> bool) -> bool;
fn contains<'a>(&self, needle: &'a str) -> bool;
fn contains_char(&self, needle: char) -> bool;
fn iter(&self) -> StrCharIterator<'self>;
fn rev_iter(&self) -> StrCharRevIterator<'self>;
fn bytes_iter(&self) -> StrBytesIterator<'self>;
fn bytes_rev_iter(&self) -> StrBytesRevIterator<'self>;
fn split_iter<Sep: StrCharSplitSeparator>(&self, sep: Sep) -> StrCharSplitIterator<'self, Sep>;
fn splitn_iter<Sep: StrCharSplitSeparator>(&self, sep: Sep, count: uint)
-> StrCharSplitIterator<'self, Sep>;
fn split_options_iter<Sep: StrCharSplitSeparator>(&self, sep: Sep,
count: uint, allow_trailing_empty: bool)
-> StrCharSplitIterator<'self, Sep>;
/// An iterator over the lines of a string (subsequences separated
/// by `\n`).
fn line_iter(&self) -> StrCharSplitIterator<'self, char>;
/// An iterator over the words of a string (subsequences separated
/// by any sequence of whitespace).
fn word_iter(&self) -> WordIterator<'self>;
fn ends_with(&self, needle: &str) -> bool;
fn is_empty(&self) -> bool;
fn is_whitespace(&self) -> bool;
fn is_alphanumeric(&self) -> bool;
fn len(&self) -> uint;
fn char_len(&self) -> uint;
fn slice(&self, begin: uint, end: uint) -> &'self str;
fn each_split_str<'a>(&self, sep: &'a str, it: &fn(&'self str) -> bool) -> bool;
fn starts_with<'a>(&self, needle: &'a str) -> bool;
fn substr(&self, begin: uint, n: uint) -> &'self str;
fn escape_default(&self) -> ~str;
fn escape_unicode(&self) -> ~str;
fn trim(&self) -> &'self str;
fn trim_left(&self) -> &'self str;
fn trim_right(&self) -> &'self str;
fn trim_chars(&self, chars_to_trim: &[char]) -> &'self str;
fn trim_left_chars(&self, chars_to_trim: &[char]) -> &'self str;
fn trim_right_chars(&self, chars_to_trim: &[char]) -> &'self str;
fn to_owned(&self) -> ~str;
fn to_managed(&self) -> @str;
fn char_at(&self, i: uint) -> char;
fn char_at_reverse(&self, i: uint) -> char;
fn to_bytes(&self) -> ~[u8];
}
/// Extension methods for strings
impl<'self> StrSlice<'self> for &'self str {
/**
* Return true if a predicate matches all characters or if the string
* contains no characters
*/
#[inline]
fn all(&self, it: &fn(char) -> bool) -> bool { all(*self, it) }
/**
* Return true if a predicate matches any character (and false if it
* matches none or there are no characters)
*/
#[inline]
fn any(&self, it: &fn(char) -> bool) -> bool { any(*self, it) }
/// Returns true if one string contains another
#[inline]
fn contains<'a>(&self, needle: &'a str) -> bool {
contains(*self, needle)
}
/// Returns true if a string contains a char
#[inline]
fn contains_char(&self, needle: char) -> bool {
contains_char(*self, needle)
}
#[inline]
fn iter(&self) -> StrCharIterator<'self> {
StrCharIterator {
index: 0,
string: *self
}
}
#[inline]
fn rev_iter(&self) -> StrCharRevIterator<'self> {
StrCharRevIterator {
index: self.len(),
string: *self
}
}
fn bytes_iter(&self) -> StrBytesIterator<'self> {
StrBytesIterator { it: as_bytes_slice(*self).iter() }
}
fn bytes_rev_iter(&self) -> StrBytesRevIterator<'self> {
StrBytesRevIterator { it: as_bytes_slice(*self).rev_iter() }
}
fn split_iter<Sep: StrCharSplitSeparator>(&self, sep: Sep) -> StrCharSplitIterator<'self, Sep> {
self.split_options_iter(sep, self.len(), true)
}
fn splitn_iter<Sep: StrCharSplitSeparator>(&self, sep: Sep, count: uint)
-> StrCharSplitIterator<'self, Sep> {
self.split_options_iter(sep, count, true)
}
fn split_options_iter<Sep: StrCharSplitSeparator>(&self, sep: Sep,
count: uint, allow_trailing_empty: bool)
-> StrCharSplitIterator<'self, Sep> {
let only_ascii = sep.only_ascii();
StrCharSplitIterator {
string: *self,
position: 0,
sep: sep,
count: count,
allow_trailing_empty: allow_trailing_empty,
finished: false,
only_ascii: only_ascii
}
}
fn line_iter(&self) -> StrCharSplitIterator<'self, char> {
self.split_options_iter('\n', self.len(), false)
}
fn word_iter(&self) -> WordIterator<'self> {
self.split_iter(char::is_whitespace).filter(|s| !s.is_empty())
}
/// Returns true if one string ends with another
#[inline]
fn ends_with(&self, needle: &str) -> bool {
ends_with(*self, needle)
}
/// Returns true if the string has length 0
#[inline]
fn is_empty(&self) -> bool { is_empty(*self) }
/**
* Returns true if the string contains only whitespace
*
* Whitespace characters are determined by `char::is_whitespace`
*/
#[inline]
fn is_whitespace(&self) -> bool { is_whitespace(*self) }
/**
* Returns true if the string contains only alphanumerics
*
* Alphanumeric characters are determined by `char::is_alphanumeric`
*/
#[inline]
fn is_alphanumeric(&self) -> bool { is_alphanumeric(*self) }
/// Returns the size in bytes not counting the null terminator
#[inline(always)]
fn len(&self) -> uint { len(*self) }
/// Returns the number of characters that a string holds
#[inline]
fn char_len(&self) -> uint { char_len(*self) }
/**
* Returns a slice of the given string from the byte range
* [`begin`..`end`)
*
* Fails when `begin` and `end` do not point to valid characters or
* beyond the last character of the string
*/
#[inline]
fn slice(&self, begin: uint, end: uint) -> &'self str {
slice(*self, begin, end)
}
/**
* Splits a string into a vector of the substrings separated by a given
* string
*/
#[inline]
fn each_split_str<'a>(&self, sep: &'a str, it: &fn(&'self str) -> bool) -> bool {
each_split_str(*self, sep, it)
}
/// Returns true if one string starts with another
#[inline]
fn starts_with<'a>(&self, needle: &'a str) -> bool {
starts_with(*self, needle)
}
/**
* Take a substring of another.
*
* Returns a string containing `n` characters starting at byte offset
* `begin`.
*/
#[inline]
fn substr(&self, begin: uint, n: uint) -> &'self str {
substr(*self, begin, n)
}
/// Escape each char in `s` with char::escape_default.
#[inline]
fn escape_default(&self) -> ~str { escape_default(*self) }
/// Escape each char in `s` with char::escape_unicode.
#[inline]
fn escape_unicode(&self) -> ~str { escape_unicode(*self) }
/// Returns a string with leading and trailing whitespace removed
#[inline]
fn trim(&self) -> &'self str { trim(*self) }
/// Returns a string with leading whitespace removed
#[inline]
fn trim_left(&self) -> &'self str { trim_left(*self) }
/// Returns a string with trailing whitespace removed
#[inline]
fn trim_right(&self) -> &'self str { trim_right(*self) }
#[inline]
fn trim_chars(&self, chars_to_trim: &[char]) -> &'self str {
trim_chars(*self, chars_to_trim)
}
#[inline]
fn trim_left_chars(&self, chars_to_trim: &[char]) -> &'self str {
trim_left_chars(*self, chars_to_trim)
}
#[inline]
fn trim_right_chars(&self, chars_to_trim: &[char]) -> &'self str {
trim_right_chars(*self, chars_to_trim)
}
#[inline]
fn to_owned(&self) -> ~str { to_owned(*self) }
#[inline]
fn to_managed(&self) -> @str {
let v = at_vec::from_fn(self.len() + 1, |i| {
if i == self.len() { 0 } else { self[i] }
});
unsafe { ::cast::transmute(v) }
}
#[inline]
fn char_at(&self, i: uint) -> char { char_at(*self, i) }
#[inline]
fn char_at_reverse(&self, i: uint) -> char {
char_at_reverse(*self, i)
}
fn to_bytes(&self) -> ~[u8] { to_bytes(*self) }
}
#[allow(missing_doc)]
pub trait OwnedStr {
fn push_str(&mut self, v: &str);
fn push_char(&mut self, c: char);
}
impl OwnedStr for ~str {
#[inline]
fn push_str(&mut self, v: &str) {
push_str(self, v);
}
#[inline]
fn push_char(&mut self, c: char) {
push_char(self, c);
}
}
impl Clone for ~str {
#[inline(always)]
fn clone(&self) -> ~str {
to_owned(*self)
}
}
/// External iterator for a string's characters. Use with the `std::iterator`
/// module.
pub struct StrCharIterator<'self> {
priv index: uint,
priv string: &'self str,
}
impl<'self> Iterator<char> for StrCharIterator<'self> {
#[inline]
fn next(&mut self) -> Option<char> {
if self.index < self.string.len() {
let CharRange {ch, next} = char_range_at(self.string, self.index);
self.index = next;
Some(ch)
} else {
None
}
}
}
/// External iterator for a string's characters in reverse order. Use
/// with the `std::iterator` module.
pub struct StrCharRevIterator<'self> {
priv index: uint,
priv string: &'self str,
}
impl<'self> Iterator<char> for StrCharRevIterator<'self> {
#[inline]
fn next(&mut self) -> Option<char> {
if self.index > 0 {
let CharRange {ch, next} = char_range_at_reverse(self.string, self.index);
self.index = next;
Some(ch)
} else {
None
}
}
}
/// External iterator for a string's bytes. Use with the `std::iterator`
/// module.
pub struct StrBytesIterator<'self> {
priv it: vec::VecIterator<'self, u8>
}
impl<'self> Iterator<u8> for StrBytesIterator<'self> {
#[inline]
fn next(&mut self) -> Option<u8> {
self.it.next().map_consume(|&x| x)
}
}
/// External iterator for a string's bytes in reverse order. Use with
/// the `std::iterator` module.
pub struct StrBytesRevIterator<'self> {
priv it: vec::VecRevIterator<'self, u8>
}
impl<'self> Iterator<u8> for StrBytesRevIterator<'self> {
#[inline]
fn next(&mut self) -> Option<u8> {
self.it.next().map_consume(|&x| x)
}
}
#[cfg(test)]
mod tests {
use iterator::IteratorUtil;
use container::Container;
use char;
use option::Some;
use libc::c_char;
use libc;
use old_iter::BaseIter;
use ptr;
use str::*;
use vec;
use vec::ImmutableVector;
use cmp::{TotalOrd, Less, Equal, Greater};
#[test]
fn test_eq() {
assert!((eq(&~"", &~"")));
assert!((eq(&~"foo", &~"foo")));
assert!((!eq(&~"foo", &~"bar")));
}
#[test]
fn test_eq_slice() {
assert!((eq_slice(slice("foobar", 0, 3), "foo")));
assert!((eq_slice(slice("barfoo", 3, 6), "foo")));
assert!((!eq_slice("foo1", "foo2")));
}
#[test]
fn test_le() {
assert!((le(&"", &"")));
assert!((le(&"", &"foo")));
assert!((le(&"foo", &"foo")));
assert!((!eq(&~"foo", &~"bar")));
}
#[test]
fn test_len() {
assert_eq!(len(""), 0u);
assert_eq!(len("hello world"), 11u);
assert_eq!(len("\x63"), 1u);
assert_eq!(len("\xa2"), 2u);
assert_eq!(len("\u03c0"), 2u);
assert_eq!(len("\u2620"), 3u);
assert_eq!(len("\U0001d11e"), 4u);
assert_eq!(char_len(""), 0u);
assert_eq!(char_len("hello world"), 11u);
assert_eq!(char_len("\x63"), 1u);
assert_eq!(char_len("\xa2"), 1u);
assert_eq!(char_len("\u03c0"), 1u);
assert_eq!(char_len("\u2620"), 1u);
assert_eq!(char_len("\U0001d11e"), 1u);
assert_eq!(char_len("ประเทศไทย中华Việt Nam"), 19u);
}
#[test]
fn test_rfind_char() {
assert_eq!(rfind_char("hello", 'l'), Some(3u));
assert_eq!(rfind_char("hello", 'o'), Some(4u));
assert_eq!(rfind_char("hello", 'h'), Some(0u));
assert!(rfind_char("hello", 'z').is_none());
assert_eq!(rfind_char("ประเทศไทย中华Việt Nam", '华'), Some(30u));
}
#[test]
fn test_pop_char() {
let mut data = ~"ประเทศไทย中华";
let cc = pop_char(&mut data);
assert_eq!(~"ประเทศไทย中", data);
assert_eq!('华', cc);
}
#[test]
fn test_pop_char_2() {
let mut data2 = ~"";
let cc2 = pop_char(&mut data2);
assert_eq!(~"", data2);
assert_eq!('华', cc2);
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_pop_char_fail() {
let mut data = ~"";
let _cc3 = pop_char(&mut data);
}
#[test]
fn test_split_str() {
fn t<'a>(s: &str, sep: &'a str, u: &[~str]) {
let mut v = ~[];
for each_split_str(s, sep) |s| { v.push(s.to_owned()) }
assert!(v.iter().zip(u.iter()).all(|(a,b)| a == b));
}
t("--1233345--", "12345", [~"--1233345--"]);
t("abc::hello::there", "::", [~"abc", ~"hello", ~"there"]);
t("::hello::there", "::", [~"", ~"hello", ~"there"]);
t("hello::there::", "::", [~"hello", ~"there", ~""]);
t("::hello::there::", "::", [~"", ~"hello", ~"there", ~""]);
t("ประเทศไทย中华Việt Nam", "中华", [~"ประเทศไทย", ~"Việt Nam"]);
t("zzXXXzzYYYzz", "zz", [~"", ~"XXX", ~"YYY", ~""]);
t("zzXXXzYYYz", "XXX", [~"zz", ~"zYYYz"]);
t(".XXX.YYY.", ".", [~"", ~"XXX", ~"YYY", ~""]);
t("", ".", [~""]);
t("zz", "zz", [~"",~""]);
t("ok", "z", [~"ok"]);
t("zzz", "zz", [~"",~"z"]);
t("zzzzz", "zz", [~"",~"",~"z"]);
}
#[test]
fn test_split_within() {
fn t(s: &str, i: uint, u: &[~str]) {
let mut v = ~[];
for each_split_within(s, i) |s| { v.push(s.to_owned()) }
assert!(v.iter().zip(u.iter()).all(|(a,b)| a == b));
}
t("", 0, []);
t("", 15, []);
t("hello", 15, [~"hello"]);
t("\nMary had a little lamb\nLittle lamb\n", 15,
[~"Mary had a", ~"little lamb", ~"Little lamb"]);
}
#[test]
fn test_find_str() {
// byte positions
assert!(find_str("banana", "apple pie").is_none());
assert_eq!(find_str("", ""), Some(0u));
let data = "ประเทศไทย中华Việt Nam";
assert_eq!(find_str(data, ""), Some(0u));
assert_eq!(find_str(data, "ประเ"), Some( 0u));
assert_eq!(find_str(data, "ะเ"), Some( 6u));
assert_eq!(find_str(data, "中华"), Some(27u));
assert!(find_str(data, "ไท华").is_none());
}
#[test]
fn test_find_str_between() {
// byte positions
assert_eq!(find_str_between("", "", 0u, 0u), Some(0u));
let data = "abcabc";
assert_eq!(find_str_between(data, "ab", 0u, 6u), Some(0u));
assert_eq!(find_str_between(data, "ab", 2u, 6u), Some(3u));
assert!(find_str_between(data, "ab", 2u, 4u).is_none());
let mut data = ~"ประเทศไทย中华Việt Nam";
data = data + data;
assert_eq!(find_str_between(data, "", 0u, 43u), Some(0u));
assert_eq!(find_str_between(data, "", 6u, 43u), Some(6u));
assert_eq!(find_str_between(data, "ประ", 0u, 43u), Some( 0u));
assert_eq!(find_str_between(data, "ทศไ", 0u, 43u), Some(12u));
assert_eq!(find_str_between(data, "ย中", 0u, 43u), Some(24u));
assert_eq!(find_str_between(data, "iệt", 0u, 43u), Some(34u));
assert_eq!(find_str_between(data, "Nam", 0u, 43u), Some(40u));
assert_eq!(find_str_between(data, "ประ", 43u, 86u), Some(43u));
assert_eq!(find_str_between(data, "ทศไ", 43u, 86u), Some(55u));
assert_eq!(find_str_between(data, "ย中", 43u, 86u), Some(67u));
assert_eq!(find_str_between(data, "iệt", 43u, 86u), Some(77u));
assert_eq!(find_str_between(data, "Nam", 43u, 86u), Some(83u));
}
#[test]
fn test_substr() {
fn t(a: &str, b: &str, start: int) {
assert_eq!(substr(a, start as uint, len(b)), b);
}
t("hello", "llo", 2);
t("hello", "el", 1);
assert_eq!("ะเทศไท", substr("ประเทศไทย中华Việt Nam", 6u, 6u));
}
#[test]
fn test_concat() {
fn t(v: &[~str], s: &str) {
assert_eq!(concat(v), s.to_str());
assert_eq!(v.concat(), s.to_str());
}
t([~"you", ~"know", ~"I'm", ~"no", ~"good"], "youknowI'mnogood");
let v: &[~str] = [];
t(v, "");
t([~"hi"], "hi");
}
#[test]
fn test_connect() {
fn t(v: &[~str], sep: &str, s: &str) {
assert_eq!(connect(v, sep), s.to_str());
assert_eq!(v.connect(sep), s.to_str());
}
t([~"you", ~"know", ~"I'm", ~"no", ~"good"],
" ", "you know I'm no good");
let v: &[~str] = [];
t(v, " ", "");
t([~"hi"], " ", "hi");
}
#[test]
fn test_concat_slices() {
fn t(v: &[&str], s: &str) {
assert_eq!(concat_slices(v), s.to_str());
assert_eq!(v.concat(), s.to_str());
}
t(["you", "know", "I'm", "no", "good"], "youknowI'mnogood");
let v: &[&str] = [];
t(v, "");
t(["hi"], "hi");
}
#[test]
fn test_connect_slices() {
fn t(v: &[&str], sep: &str, s: &str) {
assert_eq!(connect_slices(v, sep), s.to_str());
assert_eq!(v.connect(sep), s.to_str());
}
t(["you", "know", "I'm", "no", "good"],
" ", "you know I'm no good");
t([], " ", "");
t(["hi"], " ", "hi");
}
#[test]
fn test_repeat() {
assert_eq!(repeat("x", 4), ~"xxxx");
assert_eq!(repeat("hi", 4), ~"hihihihi");
assert_eq!(repeat("ไท华", 3), ~"ไท华ไท华ไท华");
assert_eq!(repeat("", 4), ~"");
assert_eq!(repeat("hi", 0), ~"");
}
#[test]
fn test_unsafe_slice() {
assert_eq!("ab", unsafe {raw::slice_bytes("abc", 0, 2)});
assert_eq!("bc", unsafe {raw::slice_bytes("abc", 1, 3)});
assert_eq!("", unsafe {raw::slice_bytes("abc", 1, 1)});
fn a_million_letter_a() -> ~str {
let mut i = 0;
let mut rs = ~"";
while i < 100000 { push_str(&mut rs, "aaaaaaaaaa"); i += 1; }
rs
}
fn half_a_million_letter_a() -> ~str {
let mut i = 0;
let mut rs = ~"";
while i < 100000 { push_str(&mut rs, "aaaaa"); i += 1; }
rs
}
let letters = a_million_letter_a();
assert!(half_a_million_letter_a() ==
unsafe {raw::slice_bytes(letters, 0u, 500000)}.to_owned());
}
#[test]
fn test_starts_with() {
assert!((starts_with("", "")));
assert!((starts_with("abc", "")));
assert!((starts_with("abc", "a")));
assert!((!starts_with("a", "abc")));
assert!((!starts_with("", "abc")));
}
#[test]
fn test_ends_with() {
assert!((ends_with("", "")));
assert!((ends_with("abc", "")));
assert!((ends_with("abc", "c")));
assert!((!ends_with("a", "abc")));
assert!((!ends_with("", "abc")));
}
#[test]
fn test_is_empty() {
assert!((is_empty("")));
assert!((!is_empty("a")));
}
#[test]
fn test_replace() {
let a = "a";
assert_eq!(replace("", a, "b"), ~"");
assert_eq!(replace("a", a, "b"), ~"b");
assert_eq!(replace("ab", a, "b"), ~"bb");
let test = "test";
assert!(replace(" test test ", test, "toast") ==
~" toast toast ");
assert_eq!(replace(" test test ", test, ""), ~" ");
}
#[test]
fn test_replace_2a() {
let data = ~"ประเทศไทย中华";
let repl = ~"دولة الكويت";
let a = ~"ประเ";
let A = ~"دولة الكويتทศไทย中华";
assert_eq!(replace(data, a, repl), A);
}
#[test]
fn test_replace_2b() {
let data = ~"ประเทศไทย中华";
let repl = ~"دولة الكويت";
let b = ~"ะเ";
let B = ~"ปรدولة الكويتทศไทย中华";
assert_eq!(replace(data, b, repl), B);
}
#[test]
fn test_replace_2c() {
let data = ~"ประเทศไทย中华";
let repl = ~"دولة الكويت";
let c = ~"中华";
let C = ~"ประเทศไทยدولة الكويت";
assert_eq!(replace(data, c, repl), C);
}
#[test]
fn test_replace_2d() {
let data = ~"ประเทศไทย中华";
let repl = ~"دولة الكويت";
let d = ~"ไท华";
assert_eq!(replace(data, d, repl), data);
}
#[test]
fn test_slice() {
assert_eq!("ab", slice("abc", 0, 2));
assert_eq!("bc", slice("abc", 1, 3));
assert_eq!("", slice("abc", 1, 1));
assert_eq!("\u65e5", slice("\u65e5\u672c", 0, 3));
let data = "ประเทศไทย中华";
assert_eq!("", slice(data, 0, 3));
assert_eq!("", slice(data, 3, 6));
assert_eq!("", slice(data, 3, 3));
assert_eq!("", slice(data, 30, 33));
fn a_million_letter_X() -> ~str {
let mut i = 0;
let mut rs = ~"";
while i < 100000 {
push_str(&mut rs, "华华华华华华华华华华");
i += 1;
}
rs
}
fn half_a_million_letter_X() -> ~str {
let mut i = 0;
let mut rs = ~"";
while i < 100000 { push_str(&mut rs, "华华华华华"); i += 1; }
rs
}
let letters = a_million_letter_X();
assert!(half_a_million_letter_X() ==
slice(letters, 0u, 3u * 500000u).to_owned());
}
#[test]
fn test_slice_2() {
let ss = "中华Việt Nam";
assert_eq!("", slice(ss, 3u, 6u));
assert_eq!("Việt Nam", slice(ss, 6u, 16u));
assert_eq!("ab", slice("abc", 0u, 2u));
assert_eq!("bc", slice("abc", 1u, 3u));
assert_eq!("", slice("abc", 1u, 1u));
assert_eq!("", slice(ss, 0u, 3u));
assert_eq!("华V", slice(ss, 3u, 7u));
assert_eq!("", slice(ss, 3u, 3u));
/*0: 中
3: 华
6: V
7: i
8: ệ
11: t
12:
13: N
14: a
15: m */
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_slice_fail() {
slice("中华Việt Nam", 0u, 2u);
}
#[test]
fn test_trim_left_chars() {
assert!(trim_left_chars(" *** foo *** ", []) == " *** foo *** ");
assert!(trim_left_chars(" *** foo *** ", ['*', ' ']) == "foo *** ");
assert_eq!(trim_left_chars(" *** *** ", ['*', ' ']), "");
assert!(trim_left_chars("foo *** ", ['*', ' ']) == "foo *** ");
}
#[test]
fn test_trim_right_chars() {
assert!(trim_right_chars(" *** foo *** ", []) == " *** foo *** ");
assert!(trim_right_chars(" *** foo *** ", ['*', ' ']) == " *** foo");
assert_eq!(trim_right_chars(" *** *** ", ['*', ' ']), "");
assert!(trim_right_chars(" *** foo", ['*', ' ']) == " *** foo");
}
#[test]
fn test_trim_chars() {
assert_eq!(trim_chars(" *** foo *** ", []), " *** foo *** ");
assert_eq!(trim_chars(" *** foo *** ", ['*', ' ']), "foo");
assert_eq!(trim_chars(" *** *** ", ['*', ' ']), "");
assert_eq!(trim_chars("foo", ['*', ' ']), "foo");
}
#[test]
fn test_trim_left() {
assert_eq!(trim_left(""), "");
assert_eq!(trim_left("a"), "a");
assert_eq!(trim_left(" "), "");
assert_eq!(trim_left(" blah"), "blah");
assert_eq!(trim_left(" \u3000 wut"), "wut");
assert_eq!(trim_left("hey "), "hey ");
}
#[test]
fn test_trim_right() {
assert_eq!(trim_right(""), "");
assert_eq!(trim_right("a"), "a");
assert_eq!(trim_right(" "), "");
assert_eq!(trim_right("blah "), "blah");
assert_eq!(trim_right("wut \u3000 "), "wut");
assert_eq!(trim_right(" hey"), " hey");
}
#[test]
fn test_trim() {
assert_eq!(trim(""), "");
assert_eq!(trim("a"), "a");
assert_eq!(trim(" "), "");
assert_eq!(trim(" blah "), "blah");
assert_eq!(trim("\nwut \u3000 "), "wut");
assert_eq!(trim(" hey dude "), "hey dude");
}
#[test]
fn test_is_whitespace() {
assert!(is_whitespace(""));
assert!(is_whitespace(" "));
assert!(is_whitespace("\u2009")); // Thin space
assert!(is_whitespace(" \n\t "));
assert!(!is_whitespace(" _ "));
}
#[test]
fn test_shift_byte() {
let mut s = ~"ABC";
let b = unsafe{raw::shift_byte(&mut s)};
assert_eq!(s, ~"BC");
assert_eq!(b, 65u8);
}
#[test]
fn test_pop_byte() {
let mut s = ~"ABC";
let b = unsafe{raw::pop_byte(&mut s)};
assert_eq!(s, ~"AB");
assert_eq!(b, 67u8);
}
#[test]
fn test_unsafe_from_bytes() {
let a = ~[65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8];
let b = unsafe { raw::from_bytes(a) };
assert_eq!(b, ~"AAAAAAA");
}
#[test]
fn test_from_bytes() {
let ss = ~"ศไทย中华Việt Nam";
let bb = ~[0xe0_u8, 0xb8_u8, 0xa8_u8,
0xe0_u8, 0xb9_u8, 0x84_u8,
0xe0_u8, 0xb8_u8, 0x97_u8,
0xe0_u8, 0xb8_u8, 0xa2_u8,
0xe4_u8, 0xb8_u8, 0xad_u8,
0xe5_u8, 0x8d_u8, 0x8e_u8,
0x56_u8, 0x69_u8, 0xe1_u8,
0xbb_u8, 0x87_u8, 0x74_u8,
0x20_u8, 0x4e_u8, 0x61_u8,
0x6d_u8];
assert_eq!(ss, from_bytes(bb));
}
#[test]
#[ignore(cfg(windows))]
fn test_from_bytes_fail() {
use str::not_utf8::cond;
let bb = ~[0xff_u8, 0xb8_u8, 0xa8_u8,
0xe0_u8, 0xb9_u8, 0x84_u8,
0xe0_u8, 0xb8_u8, 0x97_u8,
0xe0_u8, 0xb8_u8, 0xa2_u8,
0xe4_u8, 0xb8_u8, 0xad_u8,
0xe5_u8, 0x8d_u8, 0x8e_u8,
0x56_u8, 0x69_u8, 0xe1_u8,
0xbb_u8, 0x87_u8, 0x74_u8,
0x20_u8, 0x4e_u8, 0x61_u8,
0x6d_u8];
let mut error_happened = false;
let _x = do cond.trap(|err| {
assert_eq!(err, ~"from_bytes: input is not UTF-8; first bad byte is 255");
error_happened = true;
~""
}).in {
from_bytes(bb)
};
assert!(error_happened);
}
#[test]
fn test_unsafe_from_bytes_with_null() {
let a = [65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 0u8];
let b = unsafe { raw::from_bytes_with_null(a) };
assert_eq!(b, "AAAAAAA");
}
#[test]
fn test_from_bytes_with_null() {
let ss = "ศไทย中华Việt Nam";
let bb = [0xe0_u8, 0xb8_u8, 0xa8_u8,
0xe0_u8, 0xb9_u8, 0x84_u8,
0xe0_u8, 0xb8_u8, 0x97_u8,
0xe0_u8, 0xb8_u8, 0xa2_u8,
0xe4_u8, 0xb8_u8, 0xad_u8,
0xe5_u8, 0x8d_u8, 0x8e_u8,
0x56_u8, 0x69_u8, 0xe1_u8,
0xbb_u8, 0x87_u8, 0x74_u8,
0x20_u8, 0x4e_u8, 0x61_u8,
0x6d_u8, 0x0_u8];
assert_eq!(ss, from_bytes_with_null(bb));
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_from_bytes_with_null_fail() {
let bb = [0xff_u8, 0xb8_u8, 0xa8_u8,
0xe0_u8, 0xb9_u8, 0x84_u8,
0xe0_u8, 0xb8_u8, 0x97_u8,
0xe0_u8, 0xb8_u8, 0xa2_u8,
0xe4_u8, 0xb8_u8, 0xad_u8,
0xe5_u8, 0x8d_u8, 0x8e_u8,
0x56_u8, 0x69_u8, 0xe1_u8,
0xbb_u8, 0x87_u8, 0x74_u8,
0x20_u8, 0x4e_u8, 0x61_u8,
0x6d_u8, 0x0_u8];
let _x = from_bytes_with_null(bb);
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_from_bytes_with_null_fail_2() {
let bb = [0xff_u8, 0xb8_u8, 0xa8_u8,
0xe0_u8, 0xb9_u8, 0x84_u8,
0xe0_u8, 0xb8_u8, 0x97_u8,
0xe0_u8, 0xb8_u8, 0xa2_u8,
0xe4_u8, 0xb8_u8, 0xad_u8,
0xe5_u8, 0x8d_u8, 0x8e_u8,
0x56_u8, 0x69_u8, 0xe1_u8,
0xbb_u8, 0x87_u8, 0x74_u8,
0x20_u8, 0x4e_u8, 0x61_u8,
0x6d_u8, 0x60_u8];
let _x = from_bytes_with_null(bb);
}
#[test]
fn test_from_buf() {
unsafe {
let a = ~[65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 0u8];
let b = vec::raw::to_ptr(a);
let c = raw::from_buf(b);
assert_eq!(c, ~"AAAAAAA");
}
}
#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_as_bytes_fail() {
// Don't double free
as_bytes::<()>(&~"", |_bytes| fail!() );
}
#[test]
fn test_as_buf() {
let a = "Abcdefg";
let b = as_buf(a, |buf, _l| {
assert_eq!(unsafe { *buf }, 65u8);
100
});
assert_eq!(b, 100);
}
#[test]
fn test_as_buf_small() {
let a = "A";
let b = as_buf(a, |buf, _l| {
assert_eq!(unsafe { *buf }, 65u8);
100
});
assert_eq!(b, 100);
}
#[test]
fn test_as_buf2() {
unsafe {
let s = ~"hello";
let sb = as_buf(s, |b, _l| b);
let s_cstr = raw::from_buf(sb);
assert_eq!(s_cstr, s);
}
}
#[test]
fn test_as_buf_3() {
let a = ~"hello";
do as_buf(a) |buf, len| {
unsafe {
assert_eq!(a[0], 'h' as u8);
assert_eq!(*buf, 'h' as u8);
assert_eq!(len, 6u);
assert_eq!(*ptr::offset(buf,4u), 'o' as u8);
assert_eq!(*ptr::offset(buf,5u), 0u8);
}
}
}
#[test]
fn test_subslice_offset() {
let a = "kernelsprite";
let b = slice(a, 7, len(a));
let c = slice(a, 0, len(a) - 6);
assert_eq!(subslice_offset(a, b), 7);
assert_eq!(subslice_offset(a, c), 0);
let string = "a\nb\nc";
let mut lines = ~[];
for string.line_iter().advance |line| { lines.push(line) }
assert_eq!(subslice_offset(string, lines[0]), 0);
assert_eq!(subslice_offset(string, lines[1]), 2);
assert_eq!(subslice_offset(string, lines[2]), 4);
}
#[test]
#[should_fail]
fn test_subslice_offset_2() {
let a = "alchemiter";
let b = "cruxtruder";
subslice_offset(a, b);
}
#[test]
fn vec_str_conversions() {
let s1: ~str = ~"All mimsy were the borogoves";
let v: ~[u8] = to_bytes(s1);
let s2: ~str = from_bytes(v);
let mut i: uint = 0u;
let n1: uint = len(s1);
let n2: uint = v.len();
assert_eq!(n1, n2);
while i < n1 {
let a: u8 = s1[i];
let b: u8 = s2[i];
debug!(a);
debug!(b);
assert_eq!(a, b);
i += 1u;
}
}
#[test]
fn test_contains() {
assert!(contains("abcde", "bcd"));
assert!(contains("abcde", "abcd"));
assert!(contains("abcde", "bcde"));
assert!(contains("abcde", ""));
assert!(contains("", ""));
assert!(!contains("abcde", "def"));
assert!(!contains("", "a"));
let data = ~"ประเทศไทย中华Việt Nam";
assert!(contains(data, "ประเ"));
assert!(contains(data, "ะเ"));
assert!(contains(data, "中华"));
assert!(!contains(data, "ไท华"));
}
#[test]
fn test_contains_char() {
assert!(contains_char("abc", 'b'));
assert!(contains_char("a", 'a'));
assert!(!contains_char("abc", 'd'));
assert!(!contains_char("", 'a'));
}
#[test]
fn test_map() {
assert_eq!(~"", map("", |c| unsafe {libc::toupper(c as c_char)} as char));
assert_eq!(~"YMCA", map("ymca", |c| unsafe {libc::toupper(c as c_char)} as char));
}
#[test]
fn test_all() {
assert_eq!(true, all("", char::is_uppercase));
assert_eq!(false, all("ymca", char::is_uppercase));
assert_eq!(true, all("YMCA", char::is_uppercase));
assert_eq!(false, all("yMCA", char::is_uppercase));
assert_eq!(false, all("YMCy", char::is_uppercase));
}
#[test]
fn test_any() {
assert_eq!(false, any("", char::is_uppercase));
assert_eq!(false, any("ymca", char::is_uppercase));
assert_eq!(true, any("YMCA", char::is_uppercase));
assert_eq!(true, any("yMCA", char::is_uppercase));
assert_eq!(true, any("Ymcy", char::is_uppercase));
}
#[test]
fn test_chars() {
let ss = ~"ศไทย中华Việt Nam";
assert!(~['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a',
'm']
== to_chars(ss));
}
#[test]
fn test_utf16() {
let pairs =
[(~"𐍅𐌿𐌻𐍆𐌹𐌻𐌰\n",
~[0xd800_u16, 0xdf45_u16, 0xd800_u16, 0xdf3f_u16,
0xd800_u16, 0xdf3b_u16, 0xd800_u16, 0xdf46_u16,
0xd800_u16, 0xdf39_u16, 0xd800_u16, 0xdf3b_u16,
0xd800_u16, 0xdf30_u16, 0x000a_u16]),
(~"𐐒𐑉𐐮𐑀𐐲𐑋 𐐏𐐲𐑍\n",
~[0xd801_u16, 0xdc12_u16, 0xd801_u16,
0xdc49_u16, 0xd801_u16, 0xdc2e_u16, 0xd801_u16,
0xdc40_u16, 0xd801_u16, 0xdc32_u16, 0xd801_u16,
0xdc4b_u16, 0x0020_u16, 0xd801_u16, 0xdc0f_u16,
0xd801_u16, 0xdc32_u16, 0xd801_u16, 0xdc4d_u16,
0x000a_u16]),
(~"𐌀𐌖𐌋𐌄𐌑𐌉·𐌌𐌄𐌕𐌄𐌋𐌉𐌑\n",
~[0xd800_u16, 0xdf00_u16, 0xd800_u16, 0xdf16_u16,
0xd800_u16, 0xdf0b_u16, 0xd800_u16, 0xdf04_u16,
0xd800_u16, 0xdf11_u16, 0xd800_u16, 0xdf09_u16,
0x00b7_u16, 0xd800_u16, 0xdf0c_u16, 0xd800_u16,
0xdf04_u16, 0xd800_u16, 0xdf15_u16, 0xd800_u16,
0xdf04_u16, 0xd800_u16, 0xdf0b_u16, 0xd800_u16,
0xdf09_u16, 0xd800_u16, 0xdf11_u16, 0x000a_u16 ]),
(~"𐒋𐒘𐒈𐒑𐒛𐒒 𐒕𐒓 𐒈𐒚𐒍 𐒏𐒜𐒒𐒖𐒆 𐒕𐒆\n",
~[0xd801_u16, 0xdc8b_u16, 0xd801_u16, 0xdc98_u16,
0xd801_u16, 0xdc88_u16, 0xd801_u16, 0xdc91_u16,
0xd801_u16, 0xdc9b_u16, 0xd801_u16, 0xdc92_u16,
0x0020_u16, 0xd801_u16, 0xdc95_u16, 0xd801_u16,
0xdc93_u16, 0x0020_u16, 0xd801_u16, 0xdc88_u16,
0xd801_u16, 0xdc9a_u16, 0xd801_u16, 0xdc8d_u16,
0x0020_u16, 0xd801_u16, 0xdc8f_u16, 0xd801_u16,
0xdc9c_u16, 0xd801_u16, 0xdc92_u16, 0xd801_u16,
0xdc96_u16, 0xd801_u16, 0xdc86_u16, 0x0020_u16,
0xd801_u16, 0xdc95_u16, 0xd801_u16, 0xdc86_u16,
0x000a_u16 ]) ];
for pairs.each |p| {
let (s, u) = copy *p;
assert!(to_utf16(s) == u);
assert!(from_utf16(u) == s);
assert!(from_utf16(to_utf16(s)) == s);
assert!(to_utf16(from_utf16(u)) == u);
}
}
#[test]
fn test_char_at() {
let s = ~"ศไทย中华Việt Nam";
let v = ~['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m'];
let mut pos = 0;
for v.each |ch| {
assert!(s.char_at(pos) == *ch);
pos += from_char(*ch).len();
}
}
#[test]
fn test_char_at_reverse() {
let s = ~"ศไทย中华Việt Nam";
let v = ~['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m'];
let mut pos = s.len();
for v.rev_iter().advance |ch| {
assert!(s.char_at_reverse(pos) == *ch);
pos -= from_char(*ch).len();
}
}
#[test]
fn test_escape_unicode() {
assert_eq!(escape_unicode("abc"), ~"\\x61\\x62\\x63");
assert_eq!(escape_unicode("a c"), ~"\\x61\\x20\\x63");
assert_eq!(escape_unicode("\r\n\t"), ~"\\x0d\\x0a\\x09");
assert_eq!(escape_unicode("'\"\\"), ~"\\x27\\x22\\x5c");
assert!(escape_unicode("\x00\x01\xfe\xff") ==
~"\\x00\\x01\\xfe\\xff");
assert_eq!(escape_unicode("\u0100\uffff"), ~"\\u0100\\uffff");
assert!(escape_unicode("\U00010000\U0010ffff") ==
~"\\U00010000\\U0010ffff");
assert_eq!(escape_unicode("ab\ufb00"), ~"\\x61\\x62\\ufb00");
assert_eq!(escape_unicode("\U0001d4ea\r"), ~"\\U0001d4ea\\x0d");
}
#[test]
fn test_escape_default() {
assert_eq!(escape_default("abc"), ~"abc");
assert_eq!(escape_default("a c"), ~"a c");
assert_eq!(escape_default("\r\n\t"), ~"\\r\\n\\t");
assert_eq!(escape_default("'\"\\"), ~"\\'\\\"\\\\");
assert_eq!(escape_default("\u0100\uffff"), ~"\\u0100\\uffff");
assert!(escape_default("\U00010000\U0010ffff") ==
~"\\U00010000\\U0010ffff");
assert_eq!(escape_default("ab\ufb00"), ~"ab\\ufb00");
assert_eq!(escape_default("\U0001d4ea\r"), ~"\\U0001d4ea\\r");
}
#[test]
fn test_to_managed() {
assert_eq!("abc".to_managed(), @"abc");
assert_eq!(slice("abcdef", 1, 5).to_managed(), @"bcde");
}
#[test]
fn test_total_ord() {
"1234".cmp(& &"123") == Greater;
"123".cmp(& &"1234") == Less;
"1234".cmp(& &"1234") == Equal;
"12345555".cmp(& &"123456") == Less;
"22".cmp(& &"1234") == Greater;
}
#[test]
fn test_char_range_at_reverse_underflow() {
assert_eq!(char_range_at_reverse("abc", 0).next, 0);
}
#[test]
fn test_iterator() {
use iterator::*;
let s = ~"ศไทย中华Việt Nam";
let v = ~['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m'];
let mut pos = 0;
let mut it = s.iter();
for it.advance |c| {
assert_eq!(c, v[pos]);
pos += 1;
}
assert_eq!(pos, v.len());
}
#[test]
fn test_rev_iterator() {
use iterator::*;
let s = ~"ศไทย中华Việt Nam";
let v = ~['m', 'a', 'N', ' ', 't', 'ệ','i','V','华','中','ย','ท','ไ','ศ'];
let mut pos = 0;
let mut it = s.rev_iter();
for it.advance |c| {
assert_eq!(c, v[pos]);
pos += 1;
}
assert_eq!(pos, v.len());
}
#[test]
fn test_bytes_iterator() {
let s = ~"ศไทย中华Việt Nam";
let v = [
224, 184, 168, 224, 185, 132, 224, 184, 151, 224, 184, 162, 228,
184, 173, 229, 141, 142, 86, 105, 225, 187, 135, 116, 32, 78, 97,
109
];
let mut pos = 0;
for s.bytes_iter().advance |b| {
assert_eq!(b, v[pos]);
pos += 1;
}
}
#[test]
fn test_bytes_rev_iterator() {
let s = ~"ศไทย中华Việt Nam";
let v = [
224, 184, 168, 224, 185, 132, 224, 184, 151, 224, 184, 162, 228,
184, 173, 229, 141, 142, 86, 105, 225, 187, 135, 116, 32, 78, 97,
109
];
let mut pos = v.len();
for s.bytes_rev_iter().advance |b| {
pos -= 1;
assert_eq!(b, v[pos]);
}
}
#[test]
fn test_split_char_iterator() {
let data = "\nMäry häd ä little lämb\nLittle lämb\n";
let split: ~[&str] = data.split_iter(' ').collect();
assert_eq!(split, ~["\nMäry", "häd", "ä", "little", "lämb\nLittle", "lämb\n"]);
let split: ~[&str] = data.split_iter(|c: char| c == ' ').collect();
assert_eq!(split, ~["\nMäry", "häd", "ä", "little", "lämb\nLittle", "lämb\n"]);
// Unicode
let split: ~[&str] = data.split_iter('ä').collect();
assert_eq!(split, ~["\nM", "ry h", "d ", " little l", "mb\nLittle l", "mb\n"]);
let split: ~[&str] = data.split_iter(|c: char| c == 'ä').collect();
assert_eq!(split, ~["\nM", "ry h", "d ", " little l", "mb\nLittle l", "mb\n"]);
}
#[test]
fn test_splitn_char_iterator() {
let data = "\nMäry häd ä little lämb\nLittle lämb\n";
let split: ~[&str] = data.splitn_iter(' ', 3).collect();
assert_eq!(split, ~["\nMäry", "häd", "ä", "little lämb\nLittle lämb\n"]);
let split: ~[&str] = data.splitn_iter(|c: char| c == ' ', 3).collect();
assert_eq!(split, ~["\nMäry", "häd", "ä", "little lämb\nLittle lämb\n"]);
// Unicode
let split: ~[&str] = data.splitn_iter('ä', 3).collect();
assert_eq!(split, ~["\nM", "ry h", "d ", " little lämb\nLittle lämb\n"]);
let split: ~[&str] = data.splitn_iter(|c: char| c == 'ä', 3).collect();
assert_eq!(split, ~["\nM", "ry h", "d ", " little lämb\nLittle lämb\n"]);
}
#[test]
fn test_split_char_iterator_no_trailing() {
let data = "\nMäry häd ä little lämb\nLittle lämb\n";
let split: ~[&str] = data.split_options_iter('\n', 1000, true).collect();
assert_eq!(split, ~["", "Märy häd ä little lämb", "Little lämb", ""]);
let split: ~[&str] = data.split_options_iter('\n', 1000, false).collect();
assert_eq!(split, ~["", "Märy häd ä little lämb", "Little lämb"]);
}
#[test]
fn test_word_iter() {
let data = "\n \tMäry häd\tä little lämb\nLittle lämb\n";
let words: ~[&str] = data.word_iter().collect();
assert_eq!(words, ~["Märy", "häd", "ä", "little", "lämb", "Little", "lämb"])
}
#[test]
fn test_line_iter() {
let data = "\nMäry häd ä little lämb\n\nLittle lämb\n";
let lines: ~[&str] = data.line_iter().collect();
assert_eq!(lines, ~["", "Märy häd ä little lämb", "", "Little lämb"]);
let data = "\nMäry häd ä little lämb\n\nLittle lämb"; // no trailing \n
let lines: ~[&str] = data.line_iter().collect();
assert_eq!(lines, ~["", "Märy häd ä little lämb", "", "Little lämb"]);
}
}