// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! * String manipulation * * Strings are a packed UTF-8 representation of text, stored as null * terminated buffers of u8 bytes. Strings should be indexed in bytes, * for efficiency, but UTF-8 unsafe operations should be avoided. For * some heavy-duty uses, try std::rope. */ use at_vec; use cast::transmute; use cast; use char; use clone::Clone; use cmp::{TotalOrd, Ordering, Less, Equal, Greater}; use container::Container; use iter::Times; use iterator::{Iterator, IteratorUtil, FilterIterator}; use libc; use option::{None, Option, Some}; use old_iter::{BaseIter, EqIter}; use ptr; use ptr::RawPtr; use str; use to_str::ToStr; use uint; use vec; use vec::{OwnedVector, OwnedCopyableVector, ImmutableVector}; #[cfg(not(test))] use cmp::{Eq, Ord, Equiv, TotalEq}; /* Section: Conditions */ condition! { not_utf8: (~str) -> ~str; } /* Section: Creating a string */ /** * Convert a vector of bytes to a new UTF-8 string * * # Failure * * Raises the `not_utf8` condition if invalid UTF-8 */ pub fn from_bytes(vv: &[u8]) -> ~str { use str::not_utf8::cond; if !is_utf8(vv) { let first_bad_byte = vec::find(vv, |b| !is_utf8([*b])).get(); cond.raise(fmt!("from_bytes: input is not UTF-8; first bad byte is %u", first_bad_byte as uint)) } else { return unsafe { raw::from_bytes(vv) } } } /** * Convert a vector of bytes to a UTF-8 string. * The vector needs to be one byte longer than the string, and end with a 0 byte. * * Compared to `from_bytes()`, this fn doesn't need to allocate a new owned str. * * # Failure * * Fails if invalid UTF-8 * Fails if not null terminated */ pub fn from_bytes_with_null<'a>(vv: &'a [u8]) -> &'a str { assert_eq!(vv[vv.len() - 1], 0); assert!(is_utf8(vv)); return unsafe { raw::from_bytes_with_null(vv) }; } /** * Converts a vector to a string slice without performing any allocations. * * Once the slice has been validated as utf-8, it is transmuted in-place and * returned as a '&str' instead of a '&[u8]' * * # Failure * * Fails if invalid UTF-8 */ pub fn from_bytes_slice<'a>(vector: &'a [u8]) -> &'a str { unsafe { assert!(is_utf8(vector)); let (ptr, len): (*u8, uint) = ::cast::transmute(vector); let string: &'a str = ::cast::transmute((ptr, len + 1)); string } } /// Copy a slice into a new unique str #[inline(always)] pub fn to_owned(s: &str) -> ~str { unsafe { raw::slice_bytes_owned(s, 0, len(s)) } } impl ToStr for ~str { #[inline(always)] fn to_str(&self) -> ~str { to_owned(*self) } } impl<'self> ToStr for &'self str { #[inline(always)] fn to_str(&self) -> ~str { to_owned(*self) } } impl ToStr for @str { #[inline(always)] fn to_str(&self) -> ~str { to_owned(*self) } } /** * Convert a byte to a UTF-8 string * * # Failure * * Fails if invalid UTF-8 */ pub fn from_byte(b: u8) -> ~str { assert!(b < 128u8); unsafe { ::cast::transmute(~[b, 0u8]) } } /// Appends a character at the end of a string pub fn push_char(s: &mut ~str, ch: char) { unsafe { let code = ch as uint; let nb = if code < max_one_b { 1u } else if code < max_two_b { 2u } else if code < max_three_b { 3u } else if code < max_four_b { 4u } else if code < max_five_b { 5u } else { 6u }; let len = len(*s); let new_len = len + nb; reserve_at_least(&mut *s, new_len); let off = len; do as_buf(*s) |buf, _len| { let buf: *mut u8 = ::cast::transmute(buf); match nb { 1u => { *ptr::mut_offset(buf, off) = code as u8; } 2u => { *ptr::mut_offset(buf, off) = (code >> 6u & 31u | tag_two_b) as u8; *ptr::mut_offset(buf, off + 1u) = (code & 63u | tag_cont) as u8; } 3u => { *ptr::mut_offset(buf, off) = (code >> 12u & 15u | tag_three_b) as u8; *ptr::mut_offset(buf, off + 1u) = (code >> 6u & 63u | tag_cont) as u8; *ptr::mut_offset(buf, off + 2u) = (code & 63u | tag_cont) as u8; } 4u => { *ptr::mut_offset(buf, off) = (code >> 18u & 7u | tag_four_b) as u8; *ptr::mut_offset(buf, off + 1u) = (code >> 12u & 63u | tag_cont) as u8; *ptr::mut_offset(buf, off + 2u) = (code >> 6u & 63u | tag_cont) as u8; *ptr::mut_offset(buf, off + 3u) = (code & 63u | tag_cont) as u8; } 5u => { *ptr::mut_offset(buf, off) = (code >> 24u & 3u | tag_five_b) as u8; *ptr::mut_offset(buf, off + 1u) = (code >> 18u & 63u | tag_cont) as u8; *ptr::mut_offset(buf, off + 2u) = (code >> 12u & 63u | tag_cont) as u8; *ptr::mut_offset(buf, off + 3u) = (code >> 6u & 63u | tag_cont) as u8; *ptr::mut_offset(buf, off + 4u) = (code & 63u | tag_cont) as u8; } 6u => { *ptr::mut_offset(buf, off) = (code >> 30u & 1u | tag_six_b) as u8; *ptr::mut_offset(buf, off + 1u) = (code >> 24u & 63u | tag_cont) as u8; *ptr::mut_offset(buf, off + 2u) = (code >> 18u & 63u | tag_cont) as u8; *ptr::mut_offset(buf, off + 3u) = (code >> 12u & 63u | tag_cont) as u8; *ptr::mut_offset(buf, off + 4u) = (code >> 6u & 63u | tag_cont) as u8; *ptr::mut_offset(buf, off + 5u) = (code & 63u | tag_cont) as u8; } _ => {} } } raw::set_len(s, new_len); } } /// Convert a char to a string pub fn from_char(ch: char) -> ~str { let mut buf = ~""; push_char(&mut buf, ch); buf } /// Convert a vector of chars to a string pub fn from_chars(chs: &[char]) -> ~str { let mut buf = ~""; reserve(&mut buf, chs.len()); for chs.each |ch| { push_char(&mut buf, *ch); } buf } /// Appends a string slice to the back of a string, without overallocating #[inline(always)] pub fn push_str_no_overallocate(lhs: &mut ~str, rhs: &str) { unsafe { let llen = lhs.len(); let rlen = rhs.len(); reserve(&mut *lhs, llen + rlen); do as_buf(*lhs) |lbuf, _llen| { do as_buf(rhs) |rbuf, _rlen| { let dst = ptr::offset(lbuf, llen); let dst = ::cast::transmute_mut_unsafe(dst); ptr::copy_memory(dst, rbuf, rlen); } } raw::set_len(lhs, llen + rlen); } } /// Appends a string slice to the back of a string #[inline(always)] pub fn push_str(lhs: &mut ~str, rhs: &str) { unsafe { let llen = lhs.len(); let rlen = rhs.len(); reserve_at_least(&mut *lhs, llen + rlen); do as_buf(*lhs) |lbuf, _llen| { do as_buf(rhs) |rbuf, _rlen| { let dst = ptr::offset(lbuf, llen); let dst = ::cast::transmute_mut_unsafe(dst); ptr::copy_memory(dst, rbuf, rlen); } } raw::set_len(lhs, llen + rlen); } } /// Concatenate two strings together #[inline(always)] pub fn append(lhs: ~str, rhs: &str) -> ~str { let mut v = lhs; push_str_no_overallocate(&mut v, rhs); v } /// Concatenate a vector of strings pub fn concat(v: &[~str]) -> ~str { v.concat() } /// Concatenate a vector of strings pub fn concat_slices(v: &[&str]) -> ~str { v.concat() } /// Concatenate a vector of strings, placing a given separator between each pub fn connect(v: &[~str], sep: &str) -> ~str { v.connect(sep) } /// Concatenate a vector of strings, placing a given separator between each pub fn connect_slices(v: &[&str], sep: &str) -> ~str { v.connect(sep) } #[allow(missing_doc)] pub trait StrVector { pub fn concat(&self) -> ~str; pub fn connect(&self, sep: &str) -> ~str; } impl<'self> StrVector for &'self [~str] { /// Concatenate a vector of strings. pub fn concat(&self) -> ~str { if self.is_empty() { return ~""; } let mut len = 0; for self.each |ss| { len += ss.len(); } let mut s = ~""; reserve(&mut s, len); unsafe { do as_buf(s) |buf, _| { let mut buf = ::cast::transmute_mut_unsafe(buf); for self.each |ss| { do as_buf(*ss) |ssbuf, sslen| { let sslen = sslen - 1; ptr::copy_memory(buf, ssbuf, sslen); buf = buf.offset(sslen); } } } raw::set_len(&mut s, len); } s } /// Concatenate a vector of strings, placing a given separator between each. pub fn connect(&self, sep: &str) -> ~str { if self.is_empty() { return ~""; } // concat is faster if sep.is_empty() { return self.concat(); } // this is wrong without the guarantee that `self` is non-empty let mut len = sep.len() * (self.len() - 1); for self.each |ss| { len += ss.len(); } let mut s = ~""; let mut first = true; reserve(&mut s, len); unsafe { do as_buf(s) |buf, _| { do as_buf(sep) |sepbuf, seplen| { let seplen = seplen - 1; let mut buf = ::cast::transmute_mut_unsafe(buf); for self.each |ss| { do as_buf(*ss) |ssbuf, sslen| { let sslen = sslen - 1; if first { first = false; } else { ptr::copy_memory(buf, sepbuf, seplen); buf = buf.offset(seplen); } ptr::copy_memory(buf, ssbuf, sslen); buf = buf.offset(sslen); } } } } raw::set_len(&mut s, len); } s } } impl<'self> StrVector for &'self [&'self str] { /// Concatenate a vector of strings. pub fn concat(&self) -> ~str { if self.is_empty() { return ~""; } let mut len = 0; for self.each |ss| { len += ss.len(); } let mut s = ~""; reserve(&mut s, len); unsafe { do as_buf(s) |buf, _| { let mut buf = ::cast::transmute_mut_unsafe(buf); for self.each |ss| { do as_buf(*ss) |ssbuf, sslen| { let sslen = sslen - 1; ptr::copy_memory(buf, ssbuf, sslen); buf = buf.offset(sslen); } } } raw::set_len(&mut s, len); } s } /// Concatenate a vector of strings, placing a given separator between each. pub fn connect(&self, sep: &str) -> ~str { if self.is_empty() { return ~""; } // concat is faster if sep.is_empty() { return self.concat(); } // this is wrong without the guarantee that `self` is non-empty let mut len = sep.len() * (self.len() - 1); for self.each |ss| { len += ss.len(); } let mut s = ~""; let mut first = true; reserve(&mut s, len); unsafe { do as_buf(s) |buf, _| { do as_buf(sep) |sepbuf, seplen| { let seplen = seplen - 1; let mut buf = ::cast::transmute_mut_unsafe(buf); for self.each |ss| { do as_buf(*ss) |ssbuf, sslen| { let sslen = sslen - 1; if first { first = false; } else { ptr::copy_memory(buf, sepbuf, seplen); buf = buf.offset(seplen); } ptr::copy_memory(buf, ssbuf, sslen); buf = buf.offset(sslen); } } } } raw::set_len(&mut s, len); } s } } /// Given a string, make a new string with repeated copies of it pub fn repeat(ss: &str, nn: uint) -> ~str { do as_buf(ss) |buf, len| { let mut ret = ~""; // ignore the NULL terminator let len = len - 1; reserve(&mut ret, nn * len); unsafe { do as_buf(ret) |rbuf, _len| { let mut rbuf = ::cast::transmute_mut_unsafe(rbuf); for nn.times { ptr::copy_memory(rbuf, buf, len); rbuf = rbuf.offset(len); } } raw::set_len(&mut ret, nn * len); } ret } } /* Section: Adding to and removing from a string */ /** * Remove the final character from a string and return it * * # Failure * * If the string does not contain any characters */ pub fn pop_char(s: &mut ~str) -> char { let end = len(*s); assert!(end > 0u); let CharRange {ch, next} = char_range_at_reverse(*s, end); unsafe { raw::set_len(s, next); } return ch; } /** * Remove the first character from a string and return it * * # Failure * * If the string does not contain any characters */ pub fn shift_char(s: &mut ~str) -> char { let CharRange {ch, next} = char_range_at(*s, 0u); *s = unsafe { raw::slice_bytes_owned(*s, next, len(*s)) }; return ch; } /** * Removes the first character from a string slice and returns it. This does * not allocate a new string; instead, it mutates a slice to point one * character beyond the character that was shifted. * * # Failure * * If the string does not contain any characters */ #[inline] pub fn slice_shift_char<'a>(s: &'a str) -> (char, &'a str) { let CharRange {ch, next} = char_range_at(s, 0u); let next_s = unsafe { raw::slice_bytes(s, next, len(s)) }; return (ch, next_s); } /// Prepend a char to a string pub fn unshift_char(s: &mut ~str, ch: char) { // This could be more efficient. let mut new_str = ~""; new_str.push_char(ch); new_str.push_str(*s); *s = new_str; } /** * Returns a string with leading `chars_to_trim` removed. * * # Arguments * * * s - A string * * chars_to_trim - A vector of chars * */ pub fn trim_left_chars<'a>(s: &'a str, chars_to_trim: &[char]) -> &'a str { if chars_to_trim.is_empty() { return s; } match find(s, |c| !chars_to_trim.contains(&c)) { None => "", Some(first) => unsafe { raw::slice_bytes(s, first, s.len()) } } } /** * Returns a string with trailing `chars_to_trim` removed. * * # Arguments * * * s - A string * * chars_to_trim - A vector of chars * */ pub fn trim_right_chars<'a>(s: &'a str, chars_to_trim: &[char]) -> &'a str { if chars_to_trim.is_empty() { return s; } match rfind(s, |c| !chars_to_trim.contains(&c)) { None => "", Some(last) => { let next = char_range_at(s, last).next; unsafe { raw::slice_bytes(s, 0u, next) } } } } /** * Returns a string with leading and trailing `chars_to_trim` removed. * * # Arguments * * * s - A string * * chars_to_trim - A vector of chars * */ pub fn trim_chars<'a>(s: &'a str, chars_to_trim: &[char]) -> &'a str { trim_left_chars(trim_right_chars(s, chars_to_trim), chars_to_trim) } /// Returns a string with leading whitespace removed pub fn trim_left<'a>(s: &'a str) -> &'a str { match find(s, |c| !char::is_whitespace(c)) { None => "", Some(first) => unsafe { raw::slice_bytes(s, first, len(s)) } } } /// Returns a string with trailing whitespace removed pub fn trim_right<'a>(s: &'a str) -> &'a str { match rfind(s, |c| !char::is_whitespace(c)) { None => "", Some(last) => { let next = char_range_at(s, last).next; unsafe { raw::slice_bytes(s, 0u, next) } } } } /// Returns a string with leading and trailing whitespace removed pub fn trim<'a>(s: &'a str) -> &'a str { trim_left(trim_right(s)) } /* Section: Transforming strings */ /** * Converts a string to a unique vector of bytes * * The result vector is not null-terminated. */ pub fn to_bytes(s: &str) -> ~[u8] { unsafe { let mut v: ~[u8] = ::cast::transmute(to_owned(s)); vec::raw::set_len(&mut v, len(s)); v } } /// Work with the string as a byte slice, not including trailing null. #[inline(always)] pub fn byte_slice(s: &str, f: &fn(v: &[u8]) -> T) -> T { do as_buf(s) |p,n| { unsafe { vec::raw::buf_as_slice(p, n-1u, f) } } } /// Work with the string as a byte slice, not including trailing null, without /// a callback. #[inline(always)] pub fn byte_slice_no_callback<'a>(s: &'a str) -> &'a [u8] { unsafe { cast::transmute(s) } } /// Convert a string to a unique vector of characters pub fn to_chars(s: &str) -> ~[char] { s.iter().collect() } /** * Take a substring of another. * * Returns a slice pointing at `n` characters starting from byte offset * `begin`. */ pub fn substr<'a>(s: &'a str, begin: uint, n: uint) -> &'a str { slice(s, begin, begin + count_bytes(s, begin, n)) } /** * Returns a slice of the given string from the byte range [`begin`..`end`) * * Fails when `begin` and `end` do not point to valid characters or beyond * the last character of the string */ pub fn slice<'a>(s: &'a str, begin: uint, end: uint) -> &'a str { assert!(is_char_boundary(s, begin)); assert!(is_char_boundary(s, end)); unsafe { raw::slice_bytes(s, begin, end) } } /// An iterator over the substrings of a string, separated by `sep`. pub struct StrCharSplitIterator<'self,Sep> { priv string: &'self str, priv position: uint, priv sep: Sep, /// The number of splits remaining priv count: uint, /// Whether an empty string at the end is allowed priv allow_trailing_empty: bool, priv finished: bool, priv only_ascii: bool } /// An iterator over the words of a string, separated by an sequence of whitespace pub type WordIterator<'self> = FilterIterator<'self, &'self str, StrCharSplitIterator<'self, extern "Rust" fn(char) -> bool>>; /// A separator for splitting a string character-wise pub trait StrCharSplitSeparator { /// Determine if the splitter should split at the given character fn should_split(&self, char) -> bool; /// Indicate if the splitter only uses ASCII characters, which /// allows for a faster implementation. fn only_ascii(&self) -> bool; } impl StrCharSplitSeparator for char { #[inline(always)] fn should_split(&self, c: char) -> bool { *self == c } fn only_ascii(&self) -> bool { (*self as uint) < 128 } } impl<'self> StrCharSplitSeparator for &'self fn(char) -> bool { #[inline(always)] fn should_split(&self, c: char) -> bool { (*self)(c) } fn only_ascii(&self) -> bool { false } } impl<'self> StrCharSplitSeparator for extern "Rust" fn(char) -> bool { #[inline(always)] fn should_split(&self, c: char) -> bool { (*self)(c) } fn only_ascii(&self) -> bool { false } } impl<'self, Sep: StrCharSplitSeparator> Iterator<&'self str> for StrCharSplitIterator<'self, Sep> { fn next(&mut self) -> Option<&'self str> { if self.finished { return None } let l = self.string.len(); let start = self.position; if self.only_ascii { // this gives a *huge* speed up for splitting on ASCII // characters (e.g. '\n' or ' ') while self.position < l && self.count > 0 { let byte = self.string[self.position]; if self.sep.should_split(byte as char) { let slice = unsafe { raw::slice_bytes(self.string, start, self.position) }; self.position += 1; self.count -= 1; return Some(slice); } self.position += 1; } } else { while self.position < l && self.count > 0 { let CharRange {ch, next} = char_range_at(self.string, self.position); if self.sep.should_split(ch) { let slice = unsafe { raw::slice_bytes(self.string, start, self.position) }; self.position = next; self.count -= 1; return Some(slice); } self.position = next; } } self.finished = true; if self.allow_trailing_empty || start < l { Some(unsafe { raw::slice_bytes(self.string, start, l) }) } else { None } } } // See Issue #1932 for why this is a naive search fn iter_matches<'a,'b>(s: &'a str, sep: &'b str, f: &fn(uint, uint) -> bool) -> bool { let (sep_len, l) = (len(sep), len(s)); assert!(sep_len > 0u); let mut (i, match_start, match_i) = (0u, 0u, 0u); while i < l { if s[i] == sep[match_i] { if match_i == 0u { match_start = i; } match_i += 1u; // Found a match if match_i == sep_len { if !f(match_start, i + 1u) { return false; } match_i = 0u; } i += 1u; } else { // Failed match, backtrack if match_i > 0u { match_i = 0u; i = match_start + 1u; } else { i += 1u; } } } return true; } fn iter_between_matches<'a,'b>(s: &'a str, sep: &'b str, f: &fn(uint, uint) -> bool) -> bool { let mut last_end = 0u; for iter_matches(s, sep) |from, to| { if !f(last_end, from) { return false; } last_end = to; } return f(last_end, len(s)); } /** * Splits a string into a vector of the substrings separated by a given string * * # Example * * ~~~ {.rust} * let mut v = ~[]; * for each_split_str(".XXX.YYY.", ".") |subs| { v.push(subs); } * assert!(v == ["", "XXX", "YYY", ""]); * ~~~ */ pub fn each_split_str<'a,'b>(s: &'a str, sep: &'b str, it: &fn(&'a str) -> bool) -> bool { for iter_between_matches(s, sep) |from, to| { if !it( unsafe { raw::slice_bytes(s, from, to) } ) { return false; } } return true; } /** * Splits the string `s` based on `sep`, yielding all splits to the iterator * function provide * * # Example * * ~~~ {.rust} * let mut v = ~[]; * for each_split_str(".XXX.YYY.", ".") |subs| { v.push(subs); } * assert!(v == ["XXX", "YYY"]); * ~~~ */ pub fn each_split_str_nonempty<'a,'b>(s: &'a str, sep: &'b str, it: &fn(&'a str) -> bool) -> bool { for iter_between_matches(s, sep) |from, to| { if to > from { if !it( unsafe { raw::slice_bytes(s, from, to) } ) { return false; } } } return true; } /// Levenshtein Distance between two strings pub fn levdistance(s: &str, t: &str) -> uint { let slen = s.len(); let tlen = t.len(); if slen == 0 { return tlen; } if tlen == 0 { return slen; } let mut dcol = vec::from_fn(tlen + 1, |x| x); for s.iter().enumerate().advance |(i, sc)| { let mut current = i; dcol[0] = current + 1; for t.iter().enumerate().advance |(j, tc)| { let next = dcol[j + 1]; if sc == tc { dcol[j + 1] = current; } else { dcol[j + 1] = ::cmp::min(current, next); dcol[j + 1] = ::cmp::min(dcol[j + 1], dcol[j]) + 1; } current = next; } } return dcol[tlen]; } /** * Splits a string into substrings separated by LF ('\n') * and/or CR LF ("\r\n") */ pub fn each_line_any<'a>(s: &'a str, it: &fn(&'a str) -> bool) -> bool { for s.line_iter().advance |s| { let l = s.len(); if l > 0u && s[l - 1u] == '\r' as u8 { if !it( unsafe { raw::slice_bytes(s, 0, l - 1) } ) { return false; } } else { if !it( s ) { return false; } } } return true; } /** Splits a string into substrings with possibly internal whitespace, * each of them at most `lim` bytes long. The substrings have leading and trailing * whitespace removed, and are only cut at whitespace boundaries. * * #Failure: * * Fails during iteration if the string contains a non-whitespace * sequence longer than the limit. */ pub fn each_split_within<'a>(ss: &'a str, lim: uint, it: &fn(&'a str) -> bool) -> bool { // Just for fun, let's write this as an state machine: enum SplitWithinState { A, // leading whitespace, initial state B, // words C, // internal and trailing whitespace } enum Whitespace { Ws, // current char is whitespace Cr // current char is not whitespace } enum LengthLimit { UnderLim, // current char makes current substring still fit in limit OverLim // current char makes current substring no longer fit in limit } let mut slice_start = 0; let mut last_start = 0; let mut last_end = 0; let mut state = A; let mut cont = true; let slice: &fn() = || { cont = it(slice(ss, slice_start, last_end)) }; let machine: &fn((uint, char)) -> bool = |(i, c)| { let whitespace = if char::is_whitespace(c) { Ws } else { Cr }; let limit = if (i - slice_start + 1) <= lim { UnderLim } else { OverLim }; state = match (state, whitespace, limit) { (A, Ws, _) => { A } (A, Cr, _) => { slice_start = i; last_start = i; B } (B, Cr, UnderLim) => { B } (B, Cr, OverLim) if (i - last_start + 1) > lim => fail!("word starting with %? longer than limit!", self::slice(ss, last_start, i + 1)), (B, Cr, OverLim) => { slice(); slice_start = last_start; B } (B, Ws, UnderLim) => { last_end = i; C } (B, Ws, OverLim) => { last_end = i; slice(); A } (C, Cr, UnderLim) => { last_start = i; B } (C, Cr, OverLim) => { slice(); slice_start = i; last_start = i; last_end = i; B } (C, Ws, OverLim) => { slice(); A } (C, Ws, UnderLim) => { C } }; cont }; ss.iter().enumerate().advance(machine); // Let the automaton 'run out' by supplying trailing whitespace let mut fake_i = ss.len(); while cont && match state { B | C => true, A => false } { machine((fake_i, ' ')); fake_i += 1; } return cont; } /** * Replace all occurrences of one string with another * * # Arguments * * * s - The string containing substrings to replace * * from - The string to replace * * to - The replacement string * * # Return value * * The original string with all occurances of `from` replaced with `to` */ pub fn replace(s: &str, from: &str, to: &str) -> ~str { let mut (result, first) = (~"", true); for iter_between_matches(s, from) |start, end| { if first { first = false; } else { push_str(&mut result, to); } push_str(&mut result, unsafe{raw::slice_bytes(s, start, end)}); } result } /* Section: Comparing strings */ /// Bytewise slice equality #[cfg(not(test))] #[lang="str_eq"] #[inline] pub fn eq_slice(a: &str, b: &str) -> bool { do as_buf(a) |ap, alen| { do as_buf(b) |bp, blen| { if (alen != blen) { false } else { unsafe { libc::memcmp(ap as *libc::c_void, bp as *libc::c_void, (alen - 1) as libc::size_t) == 0 } } } } } #[cfg(test)] #[inline] pub fn eq_slice(a: &str, b: &str) -> bool { do as_buf(a) |ap, alen| { do as_buf(b) |bp, blen| { if (alen != blen) { false } else { unsafe { libc::memcmp(ap as *libc::c_void, bp as *libc::c_void, (alen - 1) as libc::size_t) == 0 } } } } } /// Bytewise string equality #[cfg(not(test))] #[lang="uniq_str_eq"] #[inline] pub fn eq(a: &~str, b: &~str) -> bool { eq_slice(*a, *b) } #[cfg(test)] #[inline] pub fn eq(a: &~str, b: &~str) -> bool { eq_slice(*a, *b) } #[inline] fn cmp(a: &str, b: &str) -> Ordering { let low = uint::min(a.len(), b.len()); for uint::range(0, low) |idx| { match a[idx].cmp(&b[idx]) { Greater => return Greater, Less => return Less, Equal => () } } a.len().cmp(&b.len()) } #[cfg(not(test))] impl<'self> TotalOrd for &'self str { #[inline] fn cmp(&self, other: & &'self str) -> Ordering { cmp(*self, *other) } } #[cfg(not(test))] impl TotalOrd for ~str { #[inline] fn cmp(&self, other: &~str) -> Ordering { cmp(*self, *other) } } #[cfg(not(test))] impl TotalOrd for @str { #[inline] fn cmp(&self, other: &@str) -> Ordering { cmp(*self, *other) } } /// Bytewise slice less than #[inline] fn lt(a: &str, b: &str) -> bool { let (a_len, b_len) = (a.len(), b.len()); let end = uint::min(a_len, b_len); let mut i = 0; while i < end { let (c_a, c_b) = (a[i], b[i]); if c_a < c_b { return true; } if c_a > c_b { return false; } i += 1; } return a_len < b_len; } /// Bytewise less than or equal #[inline] pub fn le(a: &str, b: &str) -> bool { !lt(b, a) } /// Bytewise greater than or equal #[inline] fn ge(a: &str, b: &str) -> bool { !lt(a, b) } /// Bytewise greater than #[inline] fn gt(a: &str, b: &str) -> bool { !le(a, b) } #[cfg(not(test))] impl<'self> Eq for &'self str { #[inline(always)] fn eq(&self, other: & &'self str) -> bool { eq_slice((*self), (*other)) } #[inline(always)] fn ne(&self, other: & &'self str) -> bool { !(*self).eq(other) } } #[cfg(not(test))] impl Eq for ~str { #[inline(always)] fn eq(&self, other: &~str) -> bool { eq_slice((*self), (*other)) } #[inline(always)] fn ne(&self, other: &~str) -> bool { !(*self).eq(other) } } #[cfg(not(test))] impl Eq for @str { #[inline(always)] fn eq(&self, other: &@str) -> bool { eq_slice((*self), (*other)) } #[inline(always)] fn ne(&self, other: &@str) -> bool { !(*self).eq(other) } } #[cfg(not(test))] impl<'self> TotalEq for &'self str { #[inline(always)] fn equals(&self, other: & &'self str) -> bool { eq_slice((*self), (*other)) } } #[cfg(not(test))] impl TotalEq for ~str { #[inline(always)] fn equals(&self, other: &~str) -> bool { eq_slice((*self), (*other)) } } #[cfg(not(test))] impl TotalEq for @str { #[inline(always)] fn equals(&self, other: &@str) -> bool { eq_slice((*self), (*other)) } } #[cfg(not(test))] impl Ord for ~str { #[inline(always)] fn lt(&self, other: &~str) -> bool { lt((*self), (*other)) } #[inline(always)] fn le(&self, other: &~str) -> bool { le((*self), (*other)) } #[inline(always)] fn ge(&self, other: &~str) -> bool { ge((*self), (*other)) } #[inline(always)] fn gt(&self, other: &~str) -> bool { gt((*self), (*other)) } } #[cfg(not(test))] impl<'self> Ord for &'self str { #[inline(always)] fn lt(&self, other: & &'self str) -> bool { lt((*self), (*other)) } #[inline(always)] fn le(&self, other: & &'self str) -> bool { le((*self), (*other)) } #[inline(always)] fn ge(&self, other: & &'self str) -> bool { ge((*self), (*other)) } #[inline(always)] fn gt(&self, other: & &'self str) -> bool { gt((*self), (*other)) } } #[cfg(not(test))] impl Ord for @str { #[inline(always)] fn lt(&self, other: &@str) -> bool { lt((*self), (*other)) } #[inline(always)] fn le(&self, other: &@str) -> bool { le((*self), (*other)) } #[inline(always)] fn ge(&self, other: &@str) -> bool { ge((*self), (*other)) } #[inline(always)] fn gt(&self, other: &@str) -> bool { gt((*self), (*other)) } } #[cfg(not(test))] impl<'self> Equiv<~str> for &'self str { #[inline(always)] fn equiv(&self, other: &~str) -> bool { eq_slice(*self, *other) } } /* Section: Iterating through strings */ /** * Return true if a predicate matches all characters or if the string * contains no characters */ pub fn all(s: &str, it: &fn(char) -> bool) -> bool { all_between(s, 0u, len(s), it) } /** * Return true if a predicate matches any character (and false if it * matches none or there are no characters) */ pub fn any(ss: &str, pred: &fn(char) -> bool) -> bool { !all(ss, |cc| !pred(cc)) } /// Apply a function to each character pub fn map(ss: &str, ff: &fn(char) -> char) -> ~str { let mut result = ~""; reserve(&mut result, len(ss)); for ss.iter().advance |cc| { str::push_char(&mut result, ff(cc)); } result } /* Section: Searching */ /** * Returns the byte index of the first matching character * * # Arguments * * * `s` - The string to search * * `c` - The character to search for * * # Return value * * An `option` containing the byte index of the first matching character * or `none` if there is no match */ pub fn find_char(s: &str, c: char) -> Option { find_char_between(s, c, 0u, len(s)) } /** * Returns the byte index of the first matching character beginning * from a given byte offset * * # Arguments * * * `s` - The string to search * * `c` - The character to search for * * `start` - The byte index to begin searching at, inclusive * * # Return value * * An `option` containing the byte index of the first matching character * or `none` if there is no match * * # Failure * * `start` must be less than or equal to `len(s)`. `start` must be the * index of a character boundary, as defined by `is_char_boundary`. */ pub fn find_char_from(s: &str, c: char, start: uint) -> Option { find_char_between(s, c, start, len(s)) } /** * Returns the byte index of the first matching character within a given range * * # Arguments * * * `s` - The string to search * * `c` - The character to search for * * `start` - The byte index to begin searching at, inclusive * * `end` - The byte index to end searching at, exclusive * * # Return value * * An `option` containing the byte index of the first matching character * or `none` if there is no match * * # Failure * * `start` must be less than or equal to `end` and `end` must be less than * or equal to `len(s)`. `start` must be the index of a character boundary, * as defined by `is_char_boundary`. */ pub fn find_char_between(s: &str, c: char, start: uint, end: uint) -> Option { if c < 128u as char { assert!(start <= end); assert!(end <= len(s)); let mut i = start; let b = c as u8; while i < end { if s[i] == b { return Some(i); } i += 1u; } return None; } else { find_between(s, start, end, |x| x == c) } } /** * Returns the byte index of the last matching character * * # Arguments * * * `s` - The string to search * * `c` - The character to search for * * # Return value * * An `option` containing the byte index of the last matching character * or `none` if there is no match */ pub fn rfind_char(s: &str, c: char) -> Option { rfind_char_between(s, c, len(s), 0u) } /** * Returns the byte index of the last matching character beginning * from a given byte offset * * # Arguments * * * `s` - The string to search * * `c` - The character to search for * * `start` - The byte index to begin searching at, exclusive * * # Return value * * An `option` containing the byte index of the last matching character * or `none` if there is no match * * # Failure * * `start` must be less than or equal to `len(s)`. `start` must be * the index of a character boundary, as defined by `is_char_boundary`. */ pub fn rfind_char_from(s: &str, c: char, start: uint) -> Option { rfind_char_between(s, c, start, 0u) } /** * Returns the byte index of the last matching character within a given range * * # Arguments * * * `s` - The string to search * * `c` - The character to search for * * `start` - The byte index to begin searching at, exclusive * * `end` - The byte index to end searching at, inclusive * * # Return value * * An `option` containing the byte index of the last matching character * or `none` if there is no match * * # Failure * * `end` must be less than or equal to `start` and `start` must be less than * or equal to `len(s)`. `start` must be the index of a character boundary, * as defined by `is_char_boundary`. */ pub fn rfind_char_between(s: &str, c: char, start: uint, end: uint) -> Option { if c < 128u as char { assert!(start >= end); assert!(start <= len(s)); let mut i = start; let b = c as u8; while i > end { i -= 1u; if s[i] == b { return Some(i); } } return None; } else { rfind_between(s, start, end, |x| x == c) } } /** * Returns the byte index of the first character that satisfies * the given predicate * * # Arguments * * * `s` - The string to search * * `f` - The predicate to satisfy * * # Return value * * An `option` containing the byte index of the first matching character * or `none` if there is no match */ pub fn find(s: &str, f: &fn(char) -> bool) -> Option { find_between(s, 0u, len(s), f) } /** * Returns the byte index of the first character that satisfies * the given predicate, beginning from a given byte offset * * # Arguments * * * `s` - The string to search * * `start` - The byte index to begin searching at, inclusive * * `f` - The predicate to satisfy * * # Return value * * An `option` containing the byte index of the first matching charactor * or `none` if there is no match * * # Failure * * `start` must be less than or equal to `len(s)`. `start` must be the * index of a character boundary, as defined by `is_char_boundary`. */ pub fn find_from(s: &str, start: uint, f: &fn(char) -> bool) -> Option { find_between(s, start, len(s), f) } /** * Returns the byte index of the first character that satisfies * the given predicate, within a given range * * # Arguments * * * `s` - The string to search * * `start` - The byte index to begin searching at, inclusive * * `end` - The byte index to end searching at, exclusive * * `f` - The predicate to satisfy * * # Return value * * An `option` containing the byte index of the first matching character * or `none` if there is no match * * # Failure * * `start` must be less than or equal to `end` and `end` must be less than * or equal to `len(s)`. `start` must be the index of a character * boundary, as defined by `is_char_boundary`. */ pub fn find_between(s: &str, start: uint, end: uint, f: &fn(char) -> bool) -> Option { assert!(start <= end); assert!(end <= len(s)); assert!(is_char_boundary(s, start)); let mut i = start; while i < end { let CharRange {ch, next} = char_range_at(s, i); if f(ch) { return Some(i); } i = next; } return None; } /** * Returns the byte index of the last character that satisfies * the given predicate * * # Arguments * * * `s` - The string to search * * `f` - The predicate to satisfy * * # Return value * * An option containing the byte index of the last matching character * or `none` if there is no match */ pub fn rfind(s: &str, f: &fn(char) -> bool) -> Option { rfind_between(s, len(s), 0u, f) } /** * Returns the byte index of the last character that satisfies * the given predicate, beginning from a given byte offset * * # Arguments * * * `s` - The string to search * * `start` - The byte index to begin searching at, exclusive * * `f` - The predicate to satisfy * * # Return value * * An `option` containing the byte index of the last matching character * or `none` if there is no match * * # Failure * * `start` must be less than or equal to `len(s)', `start` must be the * index of a character boundary, as defined by `is_char_boundary` */ pub fn rfind_from(s: &str, start: uint, f: &fn(char) -> bool) -> Option { rfind_between(s, start, 0u, f) } /** * Returns the byte index of the last character that satisfies * the given predicate, within a given range * * # Arguments * * * `s` - The string to search * * `start` - The byte index to begin searching at, exclusive * * `end` - The byte index to end searching at, inclusive * * `f` - The predicate to satisfy * * # Return value * * An `option` containing the byte index of the last matching character * or `none` if there is no match * * # Failure * * `end` must be less than or equal to `start` and `start` must be less * than or equal to `len(s)`. `start` must be the index of a character * boundary, as defined by `is_char_boundary` */ pub fn rfind_between(s: &str, start: uint, end: uint, f: &fn(char) -> bool) -> Option { assert!(start >= end); assert!(start <= len(s)); assert!(is_char_boundary(s, start)); let mut i = start; while i > end { let CharRange {ch, next: prev} = char_range_at_reverse(s, i); if f(ch) { return Some(prev); } i = prev; } return None; } // Utility used by various searching functions fn match_at<'a,'b>(haystack: &'a str, needle: &'b str, at: uint) -> bool { let mut i = at; for needle.bytes_iter().advance |c| { if haystack[i] != c { return false; } i += 1u; } return true; } /** * Returns the byte index of the first matching substring * * # Arguments * * * `haystack` - The string to search * * `needle` - The string to search for * * # Return value * * An `option` containing the byte index of the first matching substring * or `none` if there is no match */ pub fn find_str<'a,'b>(haystack: &'a str, needle: &'b str) -> Option { find_str_between(haystack, needle, 0u, len(haystack)) } /** * Returns the byte index of the first matching substring beginning * from a given byte offset * * # Arguments * * * `haystack` - The string to search * * `needle` - The string to search for * * `start` - The byte index to begin searching at, inclusive * * # Return value * * An `option` containing the byte index of the last matching character * or `none` if there is no match * * # Failure * * `start` must be less than or equal to `len(s)` */ pub fn find_str_from<'a,'b>(haystack: &'a str, needle: &'b str, start: uint) -> Option { find_str_between(haystack, needle, start, len(haystack)) } /** * Returns the byte index of the first matching substring within a given range * * # Arguments * * * `haystack` - The string to search * * `needle` - The string to search for * * `start` - The byte index to begin searching at, inclusive * * `end` - The byte index to end searching at, exclusive * * # Return value * * An `option` containing the byte index of the first matching character * or `none` if there is no match * * # Failure * * `start` must be less than or equal to `end` and `end` must be less than * or equal to `len(s)`. */ pub fn find_str_between<'a,'b>(haystack: &'a str, needle: &'b str, start: uint, end:uint) -> Option { // See Issue #1932 for why this is a naive search assert!(end <= len(haystack)); let needle_len = len(needle); if needle_len == 0u { return Some(start); } if needle_len > end { return None; } let mut i = start; let e = end - needle_len; while i <= e { if match_at(haystack, needle, i) { return Some(i); } i += 1u; } return None; } /** * Returns true if one string contains another * * # Arguments * * * haystack - The string to look in * * needle - The string to look for */ pub fn contains<'a,'b>(haystack: &'a str, needle: &'b str) -> bool { find_str(haystack, needle).is_some() } /** * Returns true if a string contains a char. * * # Arguments * * * haystack - The string to look in * * needle - The char to look for */ pub fn contains_char(haystack: &str, needle: char) -> bool { find_char(haystack, needle).is_some() } /** * Returns true if one string starts with another * * # Arguments * * * haystack - The string to look in * * needle - The string to look for */ pub fn starts_with<'a,'b>(haystack: &'a str, needle: &'b str) -> bool { let (haystack_len, needle_len) = (len(haystack), len(needle)); if needle_len == 0u { true } else if needle_len > haystack_len { false } else { match_at(haystack, needle, 0u) } } /** * Returns true if one string ends with another * * # Arguments * * * haystack - The string to look in * * needle - The string to look for */ pub fn ends_with<'a,'b>(haystack: &'a str, needle: &'b str) -> bool { let (haystack_len, needle_len) = (len(haystack), len(needle)); if needle_len == 0u { true } else if needle_len > haystack_len { false } else { match_at(haystack, needle, haystack_len - needle_len) } } /* Section: String properties */ /// Returns true if the string has length 0 #[inline(always)] pub fn is_empty(s: &str) -> bool { len(s) == 0u } /** * Returns true if the string contains only whitespace * * Whitespace characters are determined by `char::is_whitespace` */ pub fn is_whitespace(s: &str) -> bool { return all(s, char::is_whitespace); } /** * Returns true if the string contains only alphanumerics * * Alphanumeric characters are determined by `char::is_alphanumeric` */ fn is_alphanumeric(s: &str) -> bool { return all(s, char::is_alphanumeric); } /// Returns the string length/size in bytes not counting the null terminator #[inline(always)] pub fn len(s: &str) -> uint { do as_buf(s) |_p, n| { n - 1u } } /// Returns the number of characters that a string holds #[inline(always)] pub fn char_len(s: &str) -> uint { count_chars(s, 0u, len(s)) } /* Section: Misc */ /// Determines if a vector of bytes contains valid UTF-8 pub fn is_utf8(v: &const [u8]) -> bool { let mut i = 0u; let total = v.len(); while i < total { let mut chsize = utf8_char_width(v[i]); if chsize == 0u { return false; } if i + chsize > total { return false; } i += 1u; while chsize > 1u { if v[i] & 192u8 != tag_cont_u8 { return false; } i += 1u; chsize -= 1u; } } return true; } /// Determines if a vector of `u16` contains valid UTF-16 pub fn is_utf16(v: &[u16]) -> bool { let len = v.len(); let mut i = 0u; while (i < len) { let u = v[i]; if u <= 0xD7FF_u16 || u >= 0xE000_u16 { i += 1u; } else { if i+1u < len { return false; } let u2 = v[i+1u]; if u < 0xD7FF_u16 || u > 0xDBFF_u16 { return false; } if u2 < 0xDC00_u16 || u2 > 0xDFFF_u16 { return false; } i += 2u; } } return true; } /// Converts to a vector of `u16` encoded as UTF-16 pub fn to_utf16(s: &str) -> ~[u16] { let mut u = ~[]; for s.iter().advance |ch| { // Arithmetic with u32 literals is easier on the eyes than chars. let mut ch = ch as u32; if (ch & 0xFFFF_u32) == ch { // The BMP falls through (assuming non-surrogate, as it // should) assert!(ch <= 0xD7FF_u32 || ch >= 0xE000_u32); u.push(ch as u16) } else { // Supplementary planes break into surrogates. assert!(ch >= 0x1_0000_u32 && ch <= 0x10_FFFF_u32); ch -= 0x1_0000_u32; let w1 = 0xD800_u16 | ((ch >> 10) as u16); let w2 = 0xDC00_u16 | ((ch as u16) & 0x3FF_u16); u.push_all([w1, w2]) } } u } /// Iterates over the utf-16 characters in the specified slice, yielding each /// decoded unicode character to the function provided. /// /// # Failures /// /// * Fails on invalid utf-16 data pub fn utf16_chars(v: &[u16], f: &fn(char)) { let len = v.len(); let mut i = 0u; while (i < len && v[i] != 0u16) { let u = v[i]; if u <= 0xD7FF_u16 || u >= 0xE000_u16 { f(u as char); i += 1u; } else { let u2 = v[i+1u]; assert!(u >= 0xD800_u16 && u <= 0xDBFF_u16); assert!(u2 >= 0xDC00_u16 && u2 <= 0xDFFF_u16); let mut c = (u - 0xD800_u16) as char; c = c << 10; c |= (u2 - 0xDC00_u16) as char; c |= 0x1_0000_u32 as char; f(c); i += 2u; } } } /** * Allocates a new string from the utf-16 slice provided */ pub fn from_utf16(v: &[u16]) -> ~str { let mut buf = ~""; reserve(&mut buf, v.len()); utf16_chars(v, |ch| push_char(&mut buf, ch)); buf } /** * Allocates a new string with the specified capacity. The string returned is * the empty string, but has capacity for much more. */ pub fn with_capacity(capacity: uint) -> ~str { let mut buf = ~""; reserve(&mut buf, capacity); buf } /** * As char_len but for a slice of a string * * # Arguments * * * s - A valid string * * start - The position inside `s` where to start counting in bytes * * end - The position where to stop counting * * # Return value * * The number of Unicode characters in `s` between the given indices. */ pub fn count_chars(s: &str, start: uint, end: uint) -> uint { assert!(is_char_boundary(s, start)); assert!(is_char_boundary(s, end)); let mut (i, len) = (start, 0u); while i < end { let next = char_range_at(s, i).next; len += 1u; i = next; } return len; } /// Counts the number of bytes taken by the first `n` chars in `s` /// starting from `start`. pub fn count_bytes<'b>(s: &'b str, start: uint, n: uint) -> uint { assert!(is_char_boundary(s, start)); let mut (end, cnt) = (start, n); let l = len(s); while cnt > 0u { assert!(end < l); let next = char_range_at(s, end).next; cnt -= 1u; end = next; } end - start } /// Given a first byte, determine how many bytes are in this UTF-8 character pub fn utf8_char_width(b: u8) -> uint { let byte: uint = b as uint; if byte < 128u { return 1u; } // Not a valid start byte if byte < 192u { return 0u; } if byte < 224u { return 2u; } if byte < 240u { return 3u; } if byte < 248u { return 4u; } if byte < 252u { return 5u; } return 6u; } /** * Returns false if the index points into the middle of a multi-byte * character sequence. */ pub fn is_char_boundary(s: &str, index: uint) -> bool { if index == len(s) { return true; } let b = s[index]; return b < 128u8 || b >= 192u8; } /** * Pluck a character out of a string and return the index of the next * character. * * This function can be used to iterate over the unicode characters of a * string. * * # Example * * ~~~ {.rust} * let s = "中华Việt Nam"; * let i = 0u; * while i < str::len(s) { * let CharRange {ch, next} = str::char_range_at(s, i); * std::io::println(fmt!("%u: %c",i,ch)); * i = next; * } * ~~~ * * # Example output * * ~~~ * 0: 中 * 3: 华 * 6: V * 7: i * 8: ệ * 11: t * 12: * 13: N * 14: a * 15: m * ~~~ * * # Arguments * * * s - The string * * i - The byte offset of the char to extract * * # Return value * * A record {ch: char, next: uint} containing the char value and the byte * index of the next unicode character. * * # Failure * * If `i` is greater than or equal to the length of the string. * If `i` is not the index of the beginning of a valid UTF-8 character. */ pub fn char_range_at(s: &str, i: uint) -> CharRange { let b0 = s[i]; let w = utf8_char_width(b0); assert!((w != 0u)); if w == 1u { return CharRange {ch: b0 as char, next: i + 1u}; } let mut val = 0u; let end = i + w; let mut i = i + 1u; while i < end { let byte = s[i]; assert_eq!(byte & 192u8, tag_cont_u8); val <<= 6u; val += (byte & 63u8) as uint; i += 1u; } // Clunky way to get the right bits from the first byte. Uses two shifts, // the first to clip off the marker bits at the left of the byte, and then // a second (as uint) to get it to the right position. val += ((b0 << ((w + 1u) as u8)) as uint) << ((w - 1u) * 6u - w - 1u); return CharRange {ch: val as char, next: i}; } /// Plucks the character starting at the `i`th byte of a string pub fn char_at(s: &str, i: uint) -> char { return char_range_at(s, i).ch; } #[allow(missing_doc)] pub struct CharRange { ch: char, next: uint } /** * Given a byte position and a str, return the previous char and its position. * * This function can be used to iterate over a unicode string in reverse. * * Returns 0 for next index if called on start index 0. */ pub fn char_range_at_reverse(ss: &str, start: uint) -> CharRange { let mut prev = start; // while there is a previous byte == 10...... while prev > 0u && ss[prev - 1u] & 192u8 == tag_cont_u8 { prev -= 1u; } // now refer to the initial byte of previous char if prev > 0u { prev -= 1u; } else { prev = 0u; } let ch = char_at(ss, prev); return CharRange {ch:ch, next:prev}; } /// Plucks the character ending at the `i`th byte of a string pub fn char_at_reverse(s: &str, i: uint) -> char { char_range_at_reverse(s, i).ch } /** * Loop through a substring, char by char * * # Safety note * * * This function does not check whether the substring is valid. * * This function fails if `start` or `end` do not * represent valid positions inside `s` * * # Arguments * * * s - A string to traverse. It may be empty. * * start - The byte offset at which to start in the string. * * end - The end of the range to traverse * * it - A block to execute with each consecutive character of `s`. * Return `true` to continue, `false` to stop. * * # Return value * * `true` If execution proceeded correctly, `false` if it was interrupted, * that is if `it` returned `false` at any point. */ pub fn all_between(s: &str, start: uint, end: uint, it: &fn(char) -> bool) -> bool { assert!(is_char_boundary(s, start)); let mut i = start; while i < end { let CharRange {ch, next} = char_range_at(s, i); if !it(ch) { return false; } i = next; } return true; } /** * Loop through a substring, char by char * * # Safety note * * * This function does not check whether the substring is valid. * * This function fails if `start` or `end` do not * represent valid positions inside `s` * * # Arguments * * * s - A string to traverse. It may be empty. * * start - The byte offset at which to start in the string. * * end - The end of the range to traverse * * it - A block to execute with each consecutive character of `s`. * Return `true` to continue, `false` to stop. * * # Return value * * `true` if `it` returns `true` for any character */ pub fn any_between(s: &str, start: uint, end: uint, it: &fn(char) -> bool) -> bool { !all_between(s, start, end, |c| !it(c)) } // UTF-8 tags and ranges static tag_cont_u8: u8 = 128u8; static tag_cont: uint = 128u; static max_one_b: uint = 128u; static tag_two_b: uint = 192u; static max_two_b: uint = 2048u; static tag_three_b: uint = 224u; static max_three_b: uint = 65536u; static tag_four_b: uint = 240u; static max_four_b: uint = 2097152u; static tag_five_b: uint = 248u; static max_five_b: uint = 67108864u; static tag_six_b: uint = 252u; /** * Work with the byte buffer of a string. * * Allows for unsafe manipulation of strings, which is useful for foreign * interop. * * # Example * * ~~~ {.rust} * let i = str::as_bytes("Hello World") { |bytes| bytes.len() }; * ~~~ */ #[inline] pub fn as_bytes(s: &const ~str, f: &fn(&~[u8]) -> T) -> T { unsafe { let v: *~[u8] = cast::transmute(copy s); f(&*v) } } /** * Work with the byte buffer of a string as a byte slice. * * The byte slice does not include the null terminator. */ pub fn as_bytes_slice<'a>(s: &'a str) -> &'a [u8] { unsafe { let (ptr, len): (*u8, uint) = ::cast::transmute(s); let outgoing_tuple: (*u8, uint) = (ptr, len - 1); return ::cast::transmute(outgoing_tuple); } } /** * A dummy trait to hold all the utility methods that we implement on strings. */ pub trait StrUtil { /** * Work with the byte buffer of a string as a null-terminated C string. * * Allows for unsafe manipulation of strings, which is useful for foreign * interop. This is similar to `str::as_buf`, but guarantees null-termination. * If the given slice is not already null-terminated, this function will * allocate a temporary, copy the slice, null terminate it, and pass * that instead. * * # Example * * ~~~ {.rust} * let s = "PATH".as_c_str(|path| libc::getenv(path)); * ~~~ */ fn as_c_str(self, f: &fn(*libc::c_char) -> T) -> T; } impl<'self> StrUtil for &'self str { #[inline] fn as_c_str(self, f: &fn(*libc::c_char) -> T) -> T { do as_buf(self) |buf, len| { // NB: len includes the trailing null. assert!(len > 0); if unsafe { *(ptr::offset(buf,len-1)) != 0 } { to_owned(self).as_c_str(f) } else { f(buf as *libc::c_char) } } } } /** * Deprecated. Use the `as_c_str` method on strings instead. */ #[inline(always)] pub fn as_c_str(s: &str, f: &fn(*libc::c_char) -> T) -> T { s.as_c_str(f) } /** * Work with the byte buffer and length of a slice. * * The given length is one byte longer than the 'official' indexable * length of the string. This is to permit probing the byte past the * indexable area for a null byte, as is the case in slices pointing * to full strings, or suffixes of them. */ #[inline(always)] pub fn as_buf(s: &str, f: &fn(*u8, uint) -> T) -> T { unsafe { let v : *(*u8,uint) = transmute(&s); let (buf,len) = *v; f(buf, len) } } /** * Returns the byte offset of an inner slice relative to an enclosing outer slice * * # Example * * ~~~ {.rust} * let string = "a\nb\nc"; * let mut lines = ~[]; * for string.line_iter().advance |line| { lines.push(line) } * * assert!(subslice_offset(string, lines[0]) == 0); // &"a" * assert!(subslice_offset(string, lines[1]) == 2); // &"b" * assert!(subslice_offset(string, lines[2]) == 4); // &"c" * ~~~ */ #[inline(always)] pub fn subslice_offset(outer: &str, inner: &str) -> uint { do as_buf(outer) |a, a_len| { do as_buf(inner) |b, b_len| { let a_start: uint; let a_end: uint; let b_start: uint; let b_end: uint; unsafe { a_start = cast::transmute(a); a_end = a_len + cast::transmute(a); b_start = cast::transmute(b); b_end = b_len + cast::transmute(b); } assert!(a_start <= b_start); assert!(b_end <= a_end); b_start - a_start } } } /** * Reserves capacity for exactly `n` bytes in the given string, not including * the null terminator. * * Assuming single-byte characters, the resulting string will be large * enough to hold a string of length `n`. To account for the null terminator, * the underlying buffer will have the size `n` + 1. * * If the capacity for `s` is already equal to or greater than the requested * capacity, then no action is taken. * * # Arguments * * * s - A string * * n - The number of bytes to reserve space for */ #[inline(always)] pub fn reserve(s: &mut ~str, n: uint) { unsafe { let v: *mut ~[u8] = cast::transmute(s); vec::reserve(&mut *v, n + 1); } } /** * Reserves capacity for at least `n` bytes in the given string, not including * the null terminator. * * Assuming single-byte characters, the resulting string will be large * enough to hold a string of length `n`. To account for the null terminator, * the underlying buffer will have the size `n` + 1. * * This function will over-allocate in order to amortize the allocation costs * in scenarios where the caller may need to repeatedly reserve additional * space. * * If the capacity for `s` is already equal to or greater than the requested * capacity, then no action is taken. * * # Arguments * * * s - A string * * n - The number of bytes to reserve space for */ #[inline(always)] pub fn reserve_at_least(s: &mut ~str, n: uint) { reserve(s, uint::next_power_of_two(n + 1u) - 1u) } /** * Returns the number of single-byte characters the string can hold without * reallocating */ pub fn capacity(s: &const ~str) -> uint { do as_bytes(s) |buf| { let vcap = vec::capacity(buf); assert!(vcap > 0u); vcap - 1u } } /// Escape each char in `s` with char::escape_default. pub fn escape_default(s: &str) -> ~str { let mut out: ~str = ~""; reserve_at_least(&mut out, str::len(s)); for s.iter().advance |c| { push_str(&mut out, char::escape_default(c)); } out } /// Escape each char in `s` with char::escape_unicode. pub fn escape_unicode(s: &str) -> ~str { let mut out: ~str = ~""; reserve_at_least(&mut out, str::len(s)); for s.iter().advance |c| { push_str(&mut out, char::escape_unicode(c)); } out } /// Unsafe operations pub mod raw { use cast; use libc; use ptr; use str::raw; use str::{as_buf, is_utf8, len, reserve_at_least}; use vec; /// Create a Rust string from a null-terminated *u8 buffer pub unsafe fn from_buf(buf: *u8) -> ~str { let mut (curr, i) = (buf, 0u); while *curr != 0u8 { i += 1u; curr = ptr::offset(buf, i); } return from_buf_len(buf, i); } /// Create a Rust string from a *u8 buffer of the given length pub unsafe fn from_buf_len(buf: *const u8, len: uint) -> ~str { let mut v: ~[u8] = vec::with_capacity(len + 1); vec::as_mut_buf(v, |vbuf, _len| { ptr::copy_memory(vbuf, buf as *u8, len) }); vec::raw::set_len(&mut v, len); v.push(0u8); assert!(is_utf8(v)); return ::cast::transmute(v); } /// Create a Rust string from a null-terminated C string pub unsafe fn from_c_str(c_str: *libc::c_char) -> ~str { from_buf(::cast::transmute(c_str)) } /// Create a Rust string from a `*c_char` buffer of the given length pub unsafe fn from_c_str_len(c_str: *libc::c_char, len: uint) -> ~str { from_buf_len(::cast::transmute(c_str), len) } /// Converts a vector of bytes to a new owned string. pub unsafe fn from_bytes(v: &const [u8]) -> ~str { do vec::as_const_buf(v) |buf, len| { from_buf_len(buf, len) } } /// Converts a vector of bytes to a string. /// The byte slice needs to contain valid utf8 and needs to be one byte longer than /// the string, if possible ending in a 0 byte. pub unsafe fn from_bytes_with_null<'a>(v: &'a [u8]) -> &'a str { cast::transmute(v) } /// Converts a byte to a string. pub unsafe fn from_byte(u: u8) -> ~str { raw::from_bytes([u]) } /// Form a slice from a *u8 buffer of the given length without copying. pub unsafe fn buf_as_slice(buf: *u8, len: uint, f: &fn(v: &str) -> T) -> T { let v = (buf, len + 1); assert!(is_utf8(::cast::transmute(v))); f(::cast::transmute(v)) } /** * Takes a bytewise (not UTF-8) slice from a string. * * Returns the substring from [`begin`..`end`). * * # Failure * * If begin is greater than end. * If end is greater than the length of the string. */ pub unsafe fn slice_bytes_owned(s: &str, begin: uint, end: uint) -> ~str { do as_buf(s) |sbuf, n| { assert!((begin <= end)); assert!((end <= n)); let mut v = vec::with_capacity(end - begin + 1u); do vec::as_imm_buf(v) |vbuf, _vlen| { let vbuf = ::cast::transmute_mut_unsafe(vbuf); let src = ptr::offset(sbuf, begin); ptr::copy_memory(vbuf, src, end - begin); } vec::raw::set_len(&mut v, end - begin); v.push(0u8); ::cast::transmute(v) } } /** * Takes a bytewise (not UTF-8) slice from a string. * * Returns the substring from [`begin`..`end`). * * # Failure * * If begin is greater than end. * If end is greater than the length of the string. */ #[inline] pub unsafe fn slice_bytes(s: &str, begin: uint, end: uint) -> &str { do as_buf(s) |sbuf, n| { assert!((begin <= end)); assert!((end <= n)); let tuple = (ptr::offset(sbuf, begin), end - begin + 1); ::cast::transmute(tuple) } } /// Appends a byte to a string. (Not UTF-8 safe). pub unsafe fn push_byte(s: &mut ~str, b: u8) { let new_len = s.len() + 1; reserve_at_least(&mut *s, new_len); do as_buf(*s) |buf, len| { let buf: *mut u8 = ::cast::transmute(buf); *ptr::mut_offset(buf, len) = b; } set_len(&mut *s, new_len); } /// Appends a vector of bytes to a string. (Not UTF-8 safe). unsafe fn push_bytes(s: &mut ~str, bytes: &[u8]) { let new_len = s.len() + bytes.len(); reserve_at_least(&mut *s, new_len); for bytes.each |byte| { push_byte(&mut *s, *byte); } } /// Removes the last byte from a string and returns it. (Not UTF-8 safe). pub unsafe fn pop_byte(s: &mut ~str) -> u8 { let len = len(*s); assert!((len > 0u)); let b = s[len - 1u]; set_len(s, len - 1u); return b; } /// Removes the first byte from a string and returns it. (Not UTF-8 safe). pub unsafe fn shift_byte(s: &mut ~str) -> u8 { let len = len(*s); assert!((len > 0u)); let b = s[0]; *s = raw::slice_bytes_owned(*s, 1u, len); return b; } /// Sets the length of the string and adds the null terminator #[inline] pub unsafe fn set_len(v: &mut ~str, new_len: uint) { let v: **mut vec::raw::VecRepr = cast::transmute(v); let repr: *mut vec::raw::VecRepr = *v; (*repr).unboxed.fill = new_len + 1u; let null = ptr::mut_offset(cast::transmute(&((*repr).unboxed.data)), new_len); *null = 0u8; } #[test] fn test_from_buf_len() { unsafe { let a = ~[65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 0u8]; let b = vec::raw::to_ptr(a); let c = from_buf_len(b, 3u); assert_eq!(c, ~"AAA"); } } } #[cfg(not(test))] pub mod traits { use ops::Add; use str::append; impl<'self> Add<&'self str,~str> for ~str { #[inline(always)] fn add(&self, rhs: & &'self str) -> ~str { append(copy *self, (*rhs)) } } } #[cfg(test)] pub mod traits {} #[allow(missing_doc)] pub trait StrSlice<'self> { fn all(&self, it: &fn(char) -> bool) -> bool; fn any(&self, it: &fn(char) -> bool) -> bool; fn contains<'a>(&self, needle: &'a str) -> bool; fn contains_char(&self, needle: char) -> bool; fn iter(&self) -> StrCharIterator<'self>; fn rev_iter(&self) -> StrCharRevIterator<'self>; fn bytes_iter(&self) -> StrBytesIterator<'self>; fn bytes_rev_iter(&self) -> StrBytesRevIterator<'self>; fn split_iter(&self, sep: Sep) -> StrCharSplitIterator<'self, Sep>; fn splitn_iter(&self, sep: Sep, count: uint) -> StrCharSplitIterator<'self, Sep>; fn split_options_iter(&self, sep: Sep, count: uint, allow_trailing_empty: bool) -> StrCharSplitIterator<'self, Sep>; /// An iterator over the lines of a string (subsequences separated /// by `\n`). fn line_iter(&self) -> StrCharSplitIterator<'self, char>; /// An iterator over the words of a string (subsequences separated /// by any sequence of whitespace). fn word_iter(&self) -> WordIterator<'self>; fn ends_with(&self, needle: &str) -> bool; fn is_empty(&self) -> bool; fn is_whitespace(&self) -> bool; fn is_alphanumeric(&self) -> bool; fn len(&self) -> uint; fn char_len(&self) -> uint; fn slice(&self, begin: uint, end: uint) -> &'self str; fn each_split_str<'a>(&self, sep: &'a str, it: &fn(&'self str) -> bool) -> bool; fn starts_with<'a>(&self, needle: &'a str) -> bool; fn substr(&self, begin: uint, n: uint) -> &'self str; fn escape_default(&self) -> ~str; fn escape_unicode(&self) -> ~str; fn trim(&self) -> &'self str; fn trim_left(&self) -> &'self str; fn trim_right(&self) -> &'self str; fn trim_chars(&self, chars_to_trim: &[char]) -> &'self str; fn trim_left_chars(&self, chars_to_trim: &[char]) -> &'self str; fn trim_right_chars(&self, chars_to_trim: &[char]) -> &'self str; fn to_owned(&self) -> ~str; fn to_managed(&self) -> @str; fn char_at(&self, i: uint) -> char; fn char_at_reverse(&self, i: uint) -> char; fn to_bytes(&self) -> ~[u8]; } /// Extension methods for strings impl<'self> StrSlice<'self> for &'self str { /** * Return true if a predicate matches all characters or if the string * contains no characters */ #[inline] fn all(&self, it: &fn(char) -> bool) -> bool { all(*self, it) } /** * Return true if a predicate matches any character (and false if it * matches none or there are no characters) */ #[inline] fn any(&self, it: &fn(char) -> bool) -> bool { any(*self, it) } /// Returns true if one string contains another #[inline] fn contains<'a>(&self, needle: &'a str) -> bool { contains(*self, needle) } /// Returns true if a string contains a char #[inline] fn contains_char(&self, needle: char) -> bool { contains_char(*self, needle) } #[inline] fn iter(&self) -> StrCharIterator<'self> { StrCharIterator { index: 0, string: *self } } #[inline] fn rev_iter(&self) -> StrCharRevIterator<'self> { StrCharRevIterator { index: self.len(), string: *self } } fn bytes_iter(&self) -> StrBytesIterator<'self> { StrBytesIterator { it: as_bytes_slice(*self).iter() } } fn bytes_rev_iter(&self) -> StrBytesRevIterator<'self> { StrBytesRevIterator { it: as_bytes_slice(*self).rev_iter() } } fn split_iter(&self, sep: Sep) -> StrCharSplitIterator<'self, Sep> { self.split_options_iter(sep, self.len(), true) } fn splitn_iter(&self, sep: Sep, count: uint) -> StrCharSplitIterator<'self, Sep> { self.split_options_iter(sep, count, true) } fn split_options_iter(&self, sep: Sep, count: uint, allow_trailing_empty: bool) -> StrCharSplitIterator<'self, Sep> { let only_ascii = sep.only_ascii(); StrCharSplitIterator { string: *self, position: 0, sep: sep, count: count, allow_trailing_empty: allow_trailing_empty, finished: false, only_ascii: only_ascii } } fn line_iter(&self) -> StrCharSplitIterator<'self, char> { self.split_options_iter('\n', self.len(), false) } fn word_iter(&self) -> WordIterator<'self> { self.split_iter(char::is_whitespace).filter(|s| !s.is_empty()) } /// Returns true if one string ends with another #[inline] fn ends_with(&self, needle: &str) -> bool { ends_with(*self, needle) } /// Returns true if the string has length 0 #[inline] fn is_empty(&self) -> bool { is_empty(*self) } /** * Returns true if the string contains only whitespace * * Whitespace characters are determined by `char::is_whitespace` */ #[inline] fn is_whitespace(&self) -> bool { is_whitespace(*self) } /** * Returns true if the string contains only alphanumerics * * Alphanumeric characters are determined by `char::is_alphanumeric` */ #[inline] fn is_alphanumeric(&self) -> bool { is_alphanumeric(*self) } /// Returns the size in bytes not counting the null terminator #[inline(always)] fn len(&self) -> uint { len(*self) } /// Returns the number of characters that a string holds #[inline] fn char_len(&self) -> uint { char_len(*self) } /** * Returns a slice of the given string from the byte range * [`begin`..`end`) * * Fails when `begin` and `end` do not point to valid characters or * beyond the last character of the string */ #[inline] fn slice(&self, begin: uint, end: uint) -> &'self str { slice(*self, begin, end) } /** * Splits a string into a vector of the substrings separated by a given * string */ #[inline] fn each_split_str<'a>(&self, sep: &'a str, it: &fn(&'self str) -> bool) -> bool { each_split_str(*self, sep, it) } /// Returns true if one string starts with another #[inline] fn starts_with<'a>(&self, needle: &'a str) -> bool { starts_with(*self, needle) } /** * Take a substring of another. * * Returns a string containing `n` characters starting at byte offset * `begin`. */ #[inline] fn substr(&self, begin: uint, n: uint) -> &'self str { substr(*self, begin, n) } /// Escape each char in `s` with char::escape_default. #[inline] fn escape_default(&self) -> ~str { escape_default(*self) } /// Escape each char in `s` with char::escape_unicode. #[inline] fn escape_unicode(&self) -> ~str { escape_unicode(*self) } /// Returns a string with leading and trailing whitespace removed #[inline] fn trim(&self) -> &'self str { trim(*self) } /// Returns a string with leading whitespace removed #[inline] fn trim_left(&self) -> &'self str { trim_left(*self) } /// Returns a string with trailing whitespace removed #[inline] fn trim_right(&self) -> &'self str { trim_right(*self) } #[inline] fn trim_chars(&self, chars_to_trim: &[char]) -> &'self str { trim_chars(*self, chars_to_trim) } #[inline] fn trim_left_chars(&self, chars_to_trim: &[char]) -> &'self str { trim_left_chars(*self, chars_to_trim) } #[inline] fn trim_right_chars(&self, chars_to_trim: &[char]) -> &'self str { trim_right_chars(*self, chars_to_trim) } #[inline] fn to_owned(&self) -> ~str { to_owned(*self) } #[inline] fn to_managed(&self) -> @str { let v = at_vec::from_fn(self.len() + 1, |i| { if i == self.len() { 0 } else { self[i] } }); unsafe { ::cast::transmute(v) } } #[inline] fn char_at(&self, i: uint) -> char { char_at(*self, i) } #[inline] fn char_at_reverse(&self, i: uint) -> char { char_at_reverse(*self, i) } fn to_bytes(&self) -> ~[u8] { to_bytes(*self) } } #[allow(missing_doc)] pub trait OwnedStr { fn push_str(&mut self, v: &str); fn push_char(&mut self, c: char); } impl OwnedStr for ~str { #[inline] fn push_str(&mut self, v: &str) { push_str(self, v); } #[inline] fn push_char(&mut self, c: char) { push_char(self, c); } } impl Clone for ~str { #[inline(always)] fn clone(&self) -> ~str { to_owned(*self) } } /// External iterator for a string's characters. Use with the `std::iterator` /// module. pub struct StrCharIterator<'self> { priv index: uint, priv string: &'self str, } impl<'self> Iterator for StrCharIterator<'self> { #[inline] fn next(&mut self) -> Option { if self.index < self.string.len() { let CharRange {ch, next} = char_range_at(self.string, self.index); self.index = next; Some(ch) } else { None } } } /// External iterator for a string's characters in reverse order. Use /// with the `std::iterator` module. pub struct StrCharRevIterator<'self> { priv index: uint, priv string: &'self str, } impl<'self> Iterator for StrCharRevIterator<'self> { #[inline] fn next(&mut self) -> Option { if self.index > 0 { let CharRange {ch, next} = char_range_at_reverse(self.string, self.index); self.index = next; Some(ch) } else { None } } } /// External iterator for a string's bytes. Use with the `std::iterator` /// module. pub struct StrBytesIterator<'self> { priv it: vec::VecIterator<'self, u8> } impl<'self> Iterator for StrBytesIterator<'self> { #[inline] fn next(&mut self) -> Option { self.it.next().map_consume(|&x| x) } } /// External iterator for a string's bytes in reverse order. Use with /// the `std::iterator` module. pub struct StrBytesRevIterator<'self> { priv it: vec::VecRevIterator<'self, u8> } impl<'self> Iterator for StrBytesRevIterator<'self> { #[inline] fn next(&mut self) -> Option { self.it.next().map_consume(|&x| x) } } #[cfg(test)] mod tests { use iterator::IteratorUtil; use container::Container; use char; use option::Some; use libc::c_char; use libc; use old_iter::BaseIter; use ptr; use str::*; use vec; use vec::ImmutableVector; use cmp::{TotalOrd, Less, Equal, Greater}; #[test] fn test_eq() { assert!((eq(&~"", &~""))); assert!((eq(&~"foo", &~"foo"))); assert!((!eq(&~"foo", &~"bar"))); } #[test] fn test_eq_slice() { assert!((eq_slice(slice("foobar", 0, 3), "foo"))); assert!((eq_slice(slice("barfoo", 3, 6), "foo"))); assert!((!eq_slice("foo1", "foo2"))); } #[test] fn test_le() { assert!((le(&"", &""))); assert!((le(&"", &"foo"))); assert!((le(&"foo", &"foo"))); assert!((!eq(&~"foo", &~"bar"))); } #[test] fn test_len() { assert_eq!(len(""), 0u); assert_eq!(len("hello world"), 11u); assert_eq!(len("\x63"), 1u); assert_eq!(len("\xa2"), 2u); assert_eq!(len("\u03c0"), 2u); assert_eq!(len("\u2620"), 3u); assert_eq!(len("\U0001d11e"), 4u); assert_eq!(char_len(""), 0u); assert_eq!(char_len("hello world"), 11u); assert_eq!(char_len("\x63"), 1u); assert_eq!(char_len("\xa2"), 1u); assert_eq!(char_len("\u03c0"), 1u); assert_eq!(char_len("\u2620"), 1u); assert_eq!(char_len("\U0001d11e"), 1u); assert_eq!(char_len("ประเทศไทย中华Việt Nam"), 19u); } #[test] fn test_rfind_char() { assert_eq!(rfind_char("hello", 'l'), Some(3u)); assert_eq!(rfind_char("hello", 'o'), Some(4u)); assert_eq!(rfind_char("hello", 'h'), Some(0u)); assert!(rfind_char("hello", 'z').is_none()); assert_eq!(rfind_char("ประเทศไทย中华Việt Nam", '华'), Some(30u)); } #[test] fn test_pop_char() { let mut data = ~"ประเทศไทย中华"; let cc = pop_char(&mut data); assert_eq!(~"ประเทศไทย中", data); assert_eq!('华', cc); } #[test] fn test_pop_char_2() { let mut data2 = ~"华"; let cc2 = pop_char(&mut data2); assert_eq!(~"", data2); assert_eq!('华', cc2); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_pop_char_fail() { let mut data = ~""; let _cc3 = pop_char(&mut data); } #[test] fn test_split_str() { fn t<'a>(s: &str, sep: &'a str, u: &[~str]) { let mut v = ~[]; for each_split_str(s, sep) |s| { v.push(s.to_owned()) } assert!(v.iter().zip(u.iter()).all(|(a,b)| a == b)); } t("--1233345--", "12345", [~"--1233345--"]); t("abc::hello::there", "::", [~"abc", ~"hello", ~"there"]); t("::hello::there", "::", [~"", ~"hello", ~"there"]); t("hello::there::", "::", [~"hello", ~"there", ~""]); t("::hello::there::", "::", [~"", ~"hello", ~"there", ~""]); t("ประเทศไทย中华Việt Nam", "中华", [~"ประเทศไทย", ~"Việt Nam"]); t("zzXXXzzYYYzz", "zz", [~"", ~"XXX", ~"YYY", ~""]); t("zzXXXzYYYz", "XXX", [~"zz", ~"zYYYz"]); t(".XXX.YYY.", ".", [~"", ~"XXX", ~"YYY", ~""]); t("", ".", [~""]); t("zz", "zz", [~"",~""]); t("ok", "z", [~"ok"]); t("zzz", "zz", [~"",~"z"]); t("zzzzz", "zz", [~"",~"",~"z"]); } #[test] fn test_split_within() { fn t(s: &str, i: uint, u: &[~str]) { let mut v = ~[]; for each_split_within(s, i) |s| { v.push(s.to_owned()) } assert!(v.iter().zip(u.iter()).all(|(a,b)| a == b)); } t("", 0, []); t("", 15, []); t("hello", 15, [~"hello"]); t("\nMary had a little lamb\nLittle lamb\n", 15, [~"Mary had a", ~"little lamb", ~"Little lamb"]); } #[test] fn test_find_str() { // byte positions assert!(find_str("banana", "apple pie").is_none()); assert_eq!(find_str("", ""), Some(0u)); let data = "ประเทศไทย中华Việt Nam"; assert_eq!(find_str(data, ""), Some(0u)); assert_eq!(find_str(data, "ประเ"), Some( 0u)); assert_eq!(find_str(data, "ะเ"), Some( 6u)); assert_eq!(find_str(data, "中华"), Some(27u)); assert!(find_str(data, "ไท华").is_none()); } #[test] fn test_find_str_between() { // byte positions assert_eq!(find_str_between("", "", 0u, 0u), Some(0u)); let data = "abcabc"; assert_eq!(find_str_between(data, "ab", 0u, 6u), Some(0u)); assert_eq!(find_str_between(data, "ab", 2u, 6u), Some(3u)); assert!(find_str_between(data, "ab", 2u, 4u).is_none()); let mut data = ~"ประเทศไทย中华Việt Nam"; data = data + data; assert_eq!(find_str_between(data, "", 0u, 43u), Some(0u)); assert_eq!(find_str_between(data, "", 6u, 43u), Some(6u)); assert_eq!(find_str_between(data, "ประ", 0u, 43u), Some( 0u)); assert_eq!(find_str_between(data, "ทศไ", 0u, 43u), Some(12u)); assert_eq!(find_str_between(data, "ย中", 0u, 43u), Some(24u)); assert_eq!(find_str_between(data, "iệt", 0u, 43u), Some(34u)); assert_eq!(find_str_between(data, "Nam", 0u, 43u), Some(40u)); assert_eq!(find_str_between(data, "ประ", 43u, 86u), Some(43u)); assert_eq!(find_str_between(data, "ทศไ", 43u, 86u), Some(55u)); assert_eq!(find_str_between(data, "ย中", 43u, 86u), Some(67u)); assert_eq!(find_str_between(data, "iệt", 43u, 86u), Some(77u)); assert_eq!(find_str_between(data, "Nam", 43u, 86u), Some(83u)); } #[test] fn test_substr() { fn t(a: &str, b: &str, start: int) { assert_eq!(substr(a, start as uint, len(b)), b); } t("hello", "llo", 2); t("hello", "el", 1); assert_eq!("ะเทศไท", substr("ประเทศไทย中华Việt Nam", 6u, 6u)); } #[test] fn test_concat() { fn t(v: &[~str], s: &str) { assert_eq!(concat(v), s.to_str()); assert_eq!(v.concat(), s.to_str()); } t([~"you", ~"know", ~"I'm", ~"no", ~"good"], "youknowI'mnogood"); let v: &[~str] = []; t(v, ""); t([~"hi"], "hi"); } #[test] fn test_connect() { fn t(v: &[~str], sep: &str, s: &str) { assert_eq!(connect(v, sep), s.to_str()); assert_eq!(v.connect(sep), s.to_str()); } t([~"you", ~"know", ~"I'm", ~"no", ~"good"], " ", "you know I'm no good"); let v: &[~str] = []; t(v, " ", ""); t([~"hi"], " ", "hi"); } #[test] fn test_concat_slices() { fn t(v: &[&str], s: &str) { assert_eq!(concat_slices(v), s.to_str()); assert_eq!(v.concat(), s.to_str()); } t(["you", "know", "I'm", "no", "good"], "youknowI'mnogood"); let v: &[&str] = []; t(v, ""); t(["hi"], "hi"); } #[test] fn test_connect_slices() { fn t(v: &[&str], sep: &str, s: &str) { assert_eq!(connect_slices(v, sep), s.to_str()); assert_eq!(v.connect(sep), s.to_str()); } t(["you", "know", "I'm", "no", "good"], " ", "you know I'm no good"); t([], " ", ""); t(["hi"], " ", "hi"); } #[test] fn test_repeat() { assert_eq!(repeat("x", 4), ~"xxxx"); assert_eq!(repeat("hi", 4), ~"hihihihi"); assert_eq!(repeat("ไท华", 3), ~"ไท华ไท华ไท华"); assert_eq!(repeat("", 4), ~""); assert_eq!(repeat("hi", 0), ~""); } #[test] fn test_unsafe_slice() { assert_eq!("ab", unsafe {raw::slice_bytes("abc", 0, 2)}); assert_eq!("bc", unsafe {raw::slice_bytes("abc", 1, 3)}); assert_eq!("", unsafe {raw::slice_bytes("abc", 1, 1)}); fn a_million_letter_a() -> ~str { let mut i = 0; let mut rs = ~""; while i < 100000 { push_str(&mut rs, "aaaaaaaaaa"); i += 1; } rs } fn half_a_million_letter_a() -> ~str { let mut i = 0; let mut rs = ~""; while i < 100000 { push_str(&mut rs, "aaaaa"); i += 1; } rs } let letters = a_million_letter_a(); assert!(half_a_million_letter_a() == unsafe {raw::slice_bytes(letters, 0u, 500000)}.to_owned()); } #[test] fn test_starts_with() { assert!((starts_with("", ""))); assert!((starts_with("abc", ""))); assert!((starts_with("abc", "a"))); assert!((!starts_with("a", "abc"))); assert!((!starts_with("", "abc"))); } #[test] fn test_ends_with() { assert!((ends_with("", ""))); assert!((ends_with("abc", ""))); assert!((ends_with("abc", "c"))); assert!((!ends_with("a", "abc"))); assert!((!ends_with("", "abc"))); } #[test] fn test_is_empty() { assert!((is_empty(""))); assert!((!is_empty("a"))); } #[test] fn test_replace() { let a = "a"; assert_eq!(replace("", a, "b"), ~""); assert_eq!(replace("a", a, "b"), ~"b"); assert_eq!(replace("ab", a, "b"), ~"bb"); let test = "test"; assert!(replace(" test test ", test, "toast") == ~" toast toast "); assert_eq!(replace(" test test ", test, ""), ~" "); } #[test] fn test_replace_2a() { let data = ~"ประเทศไทย中华"; let repl = ~"دولة الكويت"; let a = ~"ประเ"; let A = ~"دولة الكويتทศไทย中华"; assert_eq!(replace(data, a, repl), A); } #[test] fn test_replace_2b() { let data = ~"ประเทศไทย中华"; let repl = ~"دولة الكويت"; let b = ~"ะเ"; let B = ~"ปรدولة الكويتทศไทย中华"; assert_eq!(replace(data, b, repl), B); } #[test] fn test_replace_2c() { let data = ~"ประเทศไทย中华"; let repl = ~"دولة الكويت"; let c = ~"中华"; let C = ~"ประเทศไทยدولة الكويت"; assert_eq!(replace(data, c, repl), C); } #[test] fn test_replace_2d() { let data = ~"ประเทศไทย中华"; let repl = ~"دولة الكويت"; let d = ~"ไท华"; assert_eq!(replace(data, d, repl), data); } #[test] fn test_slice() { assert_eq!("ab", slice("abc", 0, 2)); assert_eq!("bc", slice("abc", 1, 3)); assert_eq!("", slice("abc", 1, 1)); assert_eq!("\u65e5", slice("\u65e5\u672c", 0, 3)); let data = "ประเทศไทย中华"; assert_eq!("ป", slice(data, 0, 3)); assert_eq!("ร", slice(data, 3, 6)); assert_eq!("", slice(data, 3, 3)); assert_eq!("华", slice(data, 30, 33)); fn a_million_letter_X() -> ~str { let mut i = 0; let mut rs = ~""; while i < 100000 { push_str(&mut rs, "华华华华华华华华华华"); i += 1; } rs } fn half_a_million_letter_X() -> ~str { let mut i = 0; let mut rs = ~""; while i < 100000 { push_str(&mut rs, "华华华华华"); i += 1; } rs } let letters = a_million_letter_X(); assert!(half_a_million_letter_X() == slice(letters, 0u, 3u * 500000u).to_owned()); } #[test] fn test_slice_2() { let ss = "中华Việt Nam"; assert_eq!("华", slice(ss, 3u, 6u)); assert_eq!("Việt Nam", slice(ss, 6u, 16u)); assert_eq!("ab", slice("abc", 0u, 2u)); assert_eq!("bc", slice("abc", 1u, 3u)); assert_eq!("", slice("abc", 1u, 1u)); assert_eq!("中", slice(ss, 0u, 3u)); assert_eq!("华V", slice(ss, 3u, 7u)); assert_eq!("", slice(ss, 3u, 3u)); /*0: 中 3: 华 6: V 7: i 8: ệ 11: t 12: 13: N 14: a 15: m */ } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_slice_fail() { slice("中华Việt Nam", 0u, 2u); } #[test] fn test_trim_left_chars() { assert!(trim_left_chars(" *** foo *** ", []) == " *** foo *** "); assert!(trim_left_chars(" *** foo *** ", ['*', ' ']) == "foo *** "); assert_eq!(trim_left_chars(" *** *** ", ['*', ' ']), ""); assert!(trim_left_chars("foo *** ", ['*', ' ']) == "foo *** "); } #[test] fn test_trim_right_chars() { assert!(trim_right_chars(" *** foo *** ", []) == " *** foo *** "); assert!(trim_right_chars(" *** foo *** ", ['*', ' ']) == " *** foo"); assert_eq!(trim_right_chars(" *** *** ", ['*', ' ']), ""); assert!(trim_right_chars(" *** foo", ['*', ' ']) == " *** foo"); } #[test] fn test_trim_chars() { assert_eq!(trim_chars(" *** foo *** ", []), " *** foo *** "); assert_eq!(trim_chars(" *** foo *** ", ['*', ' ']), "foo"); assert_eq!(trim_chars(" *** *** ", ['*', ' ']), ""); assert_eq!(trim_chars("foo", ['*', ' ']), "foo"); } #[test] fn test_trim_left() { assert_eq!(trim_left(""), ""); assert_eq!(trim_left("a"), "a"); assert_eq!(trim_left(" "), ""); assert_eq!(trim_left(" blah"), "blah"); assert_eq!(trim_left(" \u3000 wut"), "wut"); assert_eq!(trim_left("hey "), "hey "); } #[test] fn test_trim_right() { assert_eq!(trim_right(""), ""); assert_eq!(trim_right("a"), "a"); assert_eq!(trim_right(" "), ""); assert_eq!(trim_right("blah "), "blah"); assert_eq!(trim_right("wut \u3000 "), "wut"); assert_eq!(trim_right(" hey"), " hey"); } #[test] fn test_trim() { assert_eq!(trim(""), ""); assert_eq!(trim("a"), "a"); assert_eq!(trim(" "), ""); assert_eq!(trim(" blah "), "blah"); assert_eq!(trim("\nwut \u3000 "), "wut"); assert_eq!(trim(" hey dude "), "hey dude"); } #[test] fn test_is_whitespace() { assert!(is_whitespace("")); assert!(is_whitespace(" ")); assert!(is_whitespace("\u2009")); // Thin space assert!(is_whitespace(" \n\t ")); assert!(!is_whitespace(" _ ")); } #[test] fn test_shift_byte() { let mut s = ~"ABC"; let b = unsafe{raw::shift_byte(&mut s)}; assert_eq!(s, ~"BC"); assert_eq!(b, 65u8); } #[test] fn test_pop_byte() { let mut s = ~"ABC"; let b = unsafe{raw::pop_byte(&mut s)}; assert_eq!(s, ~"AB"); assert_eq!(b, 67u8); } #[test] fn test_unsafe_from_bytes() { let a = ~[65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8]; let b = unsafe { raw::from_bytes(a) }; assert_eq!(b, ~"AAAAAAA"); } #[test] fn test_from_bytes() { let ss = ~"ศไทย中华Việt Nam"; let bb = ~[0xe0_u8, 0xb8_u8, 0xa8_u8, 0xe0_u8, 0xb9_u8, 0x84_u8, 0xe0_u8, 0xb8_u8, 0x97_u8, 0xe0_u8, 0xb8_u8, 0xa2_u8, 0xe4_u8, 0xb8_u8, 0xad_u8, 0xe5_u8, 0x8d_u8, 0x8e_u8, 0x56_u8, 0x69_u8, 0xe1_u8, 0xbb_u8, 0x87_u8, 0x74_u8, 0x20_u8, 0x4e_u8, 0x61_u8, 0x6d_u8]; assert_eq!(ss, from_bytes(bb)); } #[test] #[ignore(cfg(windows))] fn test_from_bytes_fail() { use str::not_utf8::cond; let bb = ~[0xff_u8, 0xb8_u8, 0xa8_u8, 0xe0_u8, 0xb9_u8, 0x84_u8, 0xe0_u8, 0xb8_u8, 0x97_u8, 0xe0_u8, 0xb8_u8, 0xa2_u8, 0xe4_u8, 0xb8_u8, 0xad_u8, 0xe5_u8, 0x8d_u8, 0x8e_u8, 0x56_u8, 0x69_u8, 0xe1_u8, 0xbb_u8, 0x87_u8, 0x74_u8, 0x20_u8, 0x4e_u8, 0x61_u8, 0x6d_u8]; let mut error_happened = false; let _x = do cond.trap(|err| { assert_eq!(err, ~"from_bytes: input is not UTF-8; first bad byte is 255"); error_happened = true; ~"" }).in { from_bytes(bb) }; assert!(error_happened); } #[test] fn test_unsafe_from_bytes_with_null() { let a = [65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 0u8]; let b = unsafe { raw::from_bytes_with_null(a) }; assert_eq!(b, "AAAAAAA"); } #[test] fn test_from_bytes_with_null() { let ss = "ศไทย中华Việt Nam"; let bb = [0xe0_u8, 0xb8_u8, 0xa8_u8, 0xe0_u8, 0xb9_u8, 0x84_u8, 0xe0_u8, 0xb8_u8, 0x97_u8, 0xe0_u8, 0xb8_u8, 0xa2_u8, 0xe4_u8, 0xb8_u8, 0xad_u8, 0xe5_u8, 0x8d_u8, 0x8e_u8, 0x56_u8, 0x69_u8, 0xe1_u8, 0xbb_u8, 0x87_u8, 0x74_u8, 0x20_u8, 0x4e_u8, 0x61_u8, 0x6d_u8, 0x0_u8]; assert_eq!(ss, from_bytes_with_null(bb)); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_from_bytes_with_null_fail() { let bb = [0xff_u8, 0xb8_u8, 0xa8_u8, 0xe0_u8, 0xb9_u8, 0x84_u8, 0xe0_u8, 0xb8_u8, 0x97_u8, 0xe0_u8, 0xb8_u8, 0xa2_u8, 0xe4_u8, 0xb8_u8, 0xad_u8, 0xe5_u8, 0x8d_u8, 0x8e_u8, 0x56_u8, 0x69_u8, 0xe1_u8, 0xbb_u8, 0x87_u8, 0x74_u8, 0x20_u8, 0x4e_u8, 0x61_u8, 0x6d_u8, 0x0_u8]; let _x = from_bytes_with_null(bb); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_from_bytes_with_null_fail_2() { let bb = [0xff_u8, 0xb8_u8, 0xa8_u8, 0xe0_u8, 0xb9_u8, 0x84_u8, 0xe0_u8, 0xb8_u8, 0x97_u8, 0xe0_u8, 0xb8_u8, 0xa2_u8, 0xe4_u8, 0xb8_u8, 0xad_u8, 0xe5_u8, 0x8d_u8, 0x8e_u8, 0x56_u8, 0x69_u8, 0xe1_u8, 0xbb_u8, 0x87_u8, 0x74_u8, 0x20_u8, 0x4e_u8, 0x61_u8, 0x6d_u8, 0x60_u8]; let _x = from_bytes_with_null(bb); } #[test] fn test_from_buf() { unsafe { let a = ~[65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 0u8]; let b = vec::raw::to_ptr(a); let c = raw::from_buf(b); assert_eq!(c, ~"AAAAAAA"); } } #[test] #[ignore(cfg(windows))] #[should_fail] fn test_as_bytes_fail() { // Don't double free as_bytes::<()>(&~"", |_bytes| fail!() ); } #[test] fn test_as_buf() { let a = "Abcdefg"; let b = as_buf(a, |buf, _l| { assert_eq!(unsafe { *buf }, 65u8); 100 }); assert_eq!(b, 100); } #[test] fn test_as_buf_small() { let a = "A"; let b = as_buf(a, |buf, _l| { assert_eq!(unsafe { *buf }, 65u8); 100 }); assert_eq!(b, 100); } #[test] fn test_as_buf2() { unsafe { let s = ~"hello"; let sb = as_buf(s, |b, _l| b); let s_cstr = raw::from_buf(sb); assert_eq!(s_cstr, s); } } #[test] fn test_as_buf_3() { let a = ~"hello"; do as_buf(a) |buf, len| { unsafe { assert_eq!(a[0], 'h' as u8); assert_eq!(*buf, 'h' as u8); assert_eq!(len, 6u); assert_eq!(*ptr::offset(buf,4u), 'o' as u8); assert_eq!(*ptr::offset(buf,5u), 0u8); } } } #[test] fn test_subslice_offset() { let a = "kernelsprite"; let b = slice(a, 7, len(a)); let c = slice(a, 0, len(a) - 6); assert_eq!(subslice_offset(a, b), 7); assert_eq!(subslice_offset(a, c), 0); let string = "a\nb\nc"; let mut lines = ~[]; for string.line_iter().advance |line| { lines.push(line) } assert_eq!(subslice_offset(string, lines[0]), 0); assert_eq!(subslice_offset(string, lines[1]), 2); assert_eq!(subslice_offset(string, lines[2]), 4); } #[test] #[should_fail] fn test_subslice_offset_2() { let a = "alchemiter"; let b = "cruxtruder"; subslice_offset(a, b); } #[test] fn vec_str_conversions() { let s1: ~str = ~"All mimsy were the borogoves"; let v: ~[u8] = to_bytes(s1); let s2: ~str = from_bytes(v); let mut i: uint = 0u; let n1: uint = len(s1); let n2: uint = v.len(); assert_eq!(n1, n2); while i < n1 { let a: u8 = s1[i]; let b: u8 = s2[i]; debug!(a); debug!(b); assert_eq!(a, b); i += 1u; } } #[test] fn test_contains() { assert!(contains("abcde", "bcd")); assert!(contains("abcde", "abcd")); assert!(contains("abcde", "bcde")); assert!(contains("abcde", "")); assert!(contains("", "")); assert!(!contains("abcde", "def")); assert!(!contains("", "a")); let data = ~"ประเทศไทย中华Việt Nam"; assert!(contains(data, "ประเ")); assert!(contains(data, "ะเ")); assert!(contains(data, "中华")); assert!(!contains(data, "ไท华")); } #[test] fn test_contains_char() { assert!(contains_char("abc", 'b')); assert!(contains_char("a", 'a')); assert!(!contains_char("abc", 'd')); assert!(!contains_char("", 'a')); } #[test] fn test_map() { assert_eq!(~"", map("", |c| unsafe {libc::toupper(c as c_char)} as char)); assert_eq!(~"YMCA", map("ymca", |c| unsafe {libc::toupper(c as c_char)} as char)); } #[test] fn test_all() { assert_eq!(true, all("", char::is_uppercase)); assert_eq!(false, all("ymca", char::is_uppercase)); assert_eq!(true, all("YMCA", char::is_uppercase)); assert_eq!(false, all("yMCA", char::is_uppercase)); assert_eq!(false, all("YMCy", char::is_uppercase)); } #[test] fn test_any() { assert_eq!(false, any("", char::is_uppercase)); assert_eq!(false, any("ymca", char::is_uppercase)); assert_eq!(true, any("YMCA", char::is_uppercase)); assert_eq!(true, any("yMCA", char::is_uppercase)); assert_eq!(true, any("Ymcy", char::is_uppercase)); } #[test] fn test_chars() { let ss = ~"ศไทย中华Việt Nam"; assert!(~['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a', 'm'] == to_chars(ss)); } #[test] fn test_utf16() { let pairs = [(~"𐍅𐌿𐌻𐍆𐌹𐌻𐌰\n", ~[0xd800_u16, 0xdf45_u16, 0xd800_u16, 0xdf3f_u16, 0xd800_u16, 0xdf3b_u16, 0xd800_u16, 0xdf46_u16, 0xd800_u16, 0xdf39_u16, 0xd800_u16, 0xdf3b_u16, 0xd800_u16, 0xdf30_u16, 0x000a_u16]), (~"𐐒𐑉𐐮𐑀𐐲𐑋 𐐏𐐲𐑍\n", ~[0xd801_u16, 0xdc12_u16, 0xd801_u16, 0xdc49_u16, 0xd801_u16, 0xdc2e_u16, 0xd801_u16, 0xdc40_u16, 0xd801_u16, 0xdc32_u16, 0xd801_u16, 0xdc4b_u16, 0x0020_u16, 0xd801_u16, 0xdc0f_u16, 0xd801_u16, 0xdc32_u16, 0xd801_u16, 0xdc4d_u16, 0x000a_u16]), (~"𐌀𐌖𐌋𐌄𐌑𐌉·𐌌𐌄𐌕𐌄𐌋𐌉𐌑\n", ~[0xd800_u16, 0xdf00_u16, 0xd800_u16, 0xdf16_u16, 0xd800_u16, 0xdf0b_u16, 0xd800_u16, 0xdf04_u16, 0xd800_u16, 0xdf11_u16, 0xd800_u16, 0xdf09_u16, 0x00b7_u16, 0xd800_u16, 0xdf0c_u16, 0xd800_u16, 0xdf04_u16, 0xd800_u16, 0xdf15_u16, 0xd800_u16, 0xdf04_u16, 0xd800_u16, 0xdf0b_u16, 0xd800_u16, 0xdf09_u16, 0xd800_u16, 0xdf11_u16, 0x000a_u16 ]), (~"𐒋𐒘𐒈𐒑𐒛𐒒 𐒕𐒓 𐒈𐒚𐒍 𐒏𐒜𐒒𐒖𐒆 𐒕𐒆\n", ~[0xd801_u16, 0xdc8b_u16, 0xd801_u16, 0xdc98_u16, 0xd801_u16, 0xdc88_u16, 0xd801_u16, 0xdc91_u16, 0xd801_u16, 0xdc9b_u16, 0xd801_u16, 0xdc92_u16, 0x0020_u16, 0xd801_u16, 0xdc95_u16, 0xd801_u16, 0xdc93_u16, 0x0020_u16, 0xd801_u16, 0xdc88_u16, 0xd801_u16, 0xdc9a_u16, 0xd801_u16, 0xdc8d_u16, 0x0020_u16, 0xd801_u16, 0xdc8f_u16, 0xd801_u16, 0xdc9c_u16, 0xd801_u16, 0xdc92_u16, 0xd801_u16, 0xdc96_u16, 0xd801_u16, 0xdc86_u16, 0x0020_u16, 0xd801_u16, 0xdc95_u16, 0xd801_u16, 0xdc86_u16, 0x000a_u16 ]) ]; for pairs.each |p| { let (s, u) = copy *p; assert!(to_utf16(s) == u); assert!(from_utf16(u) == s); assert!(from_utf16(to_utf16(s)) == s); assert!(to_utf16(from_utf16(u)) == u); } } #[test] fn test_char_at() { let s = ~"ศไทย中华Việt Nam"; let v = ~['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m']; let mut pos = 0; for v.each |ch| { assert!(s.char_at(pos) == *ch); pos += from_char(*ch).len(); } } #[test] fn test_char_at_reverse() { let s = ~"ศไทย中华Việt Nam"; let v = ~['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m']; let mut pos = s.len(); for v.rev_iter().advance |ch| { assert!(s.char_at_reverse(pos) == *ch); pos -= from_char(*ch).len(); } } #[test] fn test_escape_unicode() { assert_eq!(escape_unicode("abc"), ~"\\x61\\x62\\x63"); assert_eq!(escape_unicode("a c"), ~"\\x61\\x20\\x63"); assert_eq!(escape_unicode("\r\n\t"), ~"\\x0d\\x0a\\x09"); assert_eq!(escape_unicode("'\"\\"), ~"\\x27\\x22\\x5c"); assert!(escape_unicode("\x00\x01\xfe\xff") == ~"\\x00\\x01\\xfe\\xff"); assert_eq!(escape_unicode("\u0100\uffff"), ~"\\u0100\\uffff"); assert!(escape_unicode("\U00010000\U0010ffff") == ~"\\U00010000\\U0010ffff"); assert_eq!(escape_unicode("ab\ufb00"), ~"\\x61\\x62\\ufb00"); assert_eq!(escape_unicode("\U0001d4ea\r"), ~"\\U0001d4ea\\x0d"); } #[test] fn test_escape_default() { assert_eq!(escape_default("abc"), ~"abc"); assert_eq!(escape_default("a c"), ~"a c"); assert_eq!(escape_default("\r\n\t"), ~"\\r\\n\\t"); assert_eq!(escape_default("'\"\\"), ~"\\'\\\"\\\\"); assert_eq!(escape_default("\u0100\uffff"), ~"\\u0100\\uffff"); assert!(escape_default("\U00010000\U0010ffff") == ~"\\U00010000\\U0010ffff"); assert_eq!(escape_default("ab\ufb00"), ~"ab\\ufb00"); assert_eq!(escape_default("\U0001d4ea\r"), ~"\\U0001d4ea\\r"); } #[test] fn test_to_managed() { assert_eq!("abc".to_managed(), @"abc"); assert_eq!(slice("abcdef", 1, 5).to_managed(), @"bcde"); } #[test] fn test_total_ord() { "1234".cmp(& &"123") == Greater; "123".cmp(& &"1234") == Less; "1234".cmp(& &"1234") == Equal; "12345555".cmp(& &"123456") == Less; "22".cmp(& &"1234") == Greater; } #[test] fn test_char_range_at_reverse_underflow() { assert_eq!(char_range_at_reverse("abc", 0).next, 0); } #[test] fn test_iterator() { use iterator::*; let s = ~"ศไทย中华Việt Nam"; let v = ~['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m']; let mut pos = 0; let mut it = s.iter(); for it.advance |c| { assert_eq!(c, v[pos]); pos += 1; } assert_eq!(pos, v.len()); } #[test] fn test_rev_iterator() { use iterator::*; let s = ~"ศไทย中华Việt Nam"; let v = ~['m', 'a', 'N', ' ', 't', 'ệ','i','V','华','中','ย','ท','ไ','ศ']; let mut pos = 0; let mut it = s.rev_iter(); for it.advance |c| { assert_eq!(c, v[pos]); pos += 1; } assert_eq!(pos, v.len()); } #[test] fn test_bytes_iterator() { let s = ~"ศไทย中华Việt Nam"; let v = [ 224, 184, 168, 224, 185, 132, 224, 184, 151, 224, 184, 162, 228, 184, 173, 229, 141, 142, 86, 105, 225, 187, 135, 116, 32, 78, 97, 109 ]; let mut pos = 0; for s.bytes_iter().advance |b| { assert_eq!(b, v[pos]); pos += 1; } } #[test] fn test_bytes_rev_iterator() { let s = ~"ศไทย中华Việt Nam"; let v = [ 224, 184, 168, 224, 185, 132, 224, 184, 151, 224, 184, 162, 228, 184, 173, 229, 141, 142, 86, 105, 225, 187, 135, 116, 32, 78, 97, 109 ]; let mut pos = v.len(); for s.bytes_rev_iter().advance |b| { pos -= 1; assert_eq!(b, v[pos]); } } #[test] fn test_split_char_iterator() { let data = "\nMäry häd ä little lämb\nLittle lämb\n"; let split: ~[&str] = data.split_iter(' ').collect(); assert_eq!(split, ~["\nMäry", "häd", "ä", "little", "lämb\nLittle", "lämb\n"]); let split: ~[&str] = data.split_iter(|c: char| c == ' ').collect(); assert_eq!(split, ~["\nMäry", "häd", "ä", "little", "lämb\nLittle", "lämb\n"]); // Unicode let split: ~[&str] = data.split_iter('ä').collect(); assert_eq!(split, ~["\nM", "ry h", "d ", " little l", "mb\nLittle l", "mb\n"]); let split: ~[&str] = data.split_iter(|c: char| c == 'ä').collect(); assert_eq!(split, ~["\nM", "ry h", "d ", " little l", "mb\nLittle l", "mb\n"]); } #[test] fn test_splitn_char_iterator() { let data = "\nMäry häd ä little lämb\nLittle lämb\n"; let split: ~[&str] = data.splitn_iter(' ', 3).collect(); assert_eq!(split, ~["\nMäry", "häd", "ä", "little lämb\nLittle lämb\n"]); let split: ~[&str] = data.splitn_iter(|c: char| c == ' ', 3).collect(); assert_eq!(split, ~["\nMäry", "häd", "ä", "little lämb\nLittle lämb\n"]); // Unicode let split: ~[&str] = data.splitn_iter('ä', 3).collect(); assert_eq!(split, ~["\nM", "ry h", "d ", " little lämb\nLittle lämb\n"]); let split: ~[&str] = data.splitn_iter(|c: char| c == 'ä', 3).collect(); assert_eq!(split, ~["\nM", "ry h", "d ", " little lämb\nLittle lämb\n"]); } #[test] fn test_split_char_iterator_no_trailing() { let data = "\nMäry häd ä little lämb\nLittle lämb\n"; let split: ~[&str] = data.split_options_iter('\n', 1000, true).collect(); assert_eq!(split, ~["", "Märy häd ä little lämb", "Little lämb", ""]); let split: ~[&str] = data.split_options_iter('\n', 1000, false).collect(); assert_eq!(split, ~["", "Märy häd ä little lämb", "Little lämb"]); } #[test] fn test_word_iter() { let data = "\n \tMäry häd\tä little lämb\nLittle lämb\n"; let words: ~[&str] = data.word_iter().collect(); assert_eq!(words, ~["Märy", "häd", "ä", "little", "lämb", "Little", "lämb"]) } #[test] fn test_line_iter() { let data = "\nMäry häd ä little lämb\n\nLittle lämb\n"; let lines: ~[&str] = data.line_iter().collect(); assert_eq!(lines, ~["", "Märy häd ä little lämb", "", "Little lämb"]); let data = "\nMäry häd ä little lämb\n\nLittle lämb"; // no trailing \n let lines: ~[&str] = data.line_iter().collect(); assert_eq!(lines, ~["", "Märy häd ä little lämb", "", "Little lämb"]); } }