697 lines
25 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
pub use self::ClosureKind::*;
use back::abi;
use back::link::mangle_internal_name_by_path_and_seq;
use llvm::ValueRef;
use middle::mem_categorization::Typer;
use trans::adt;
use trans::base::*;
use trans::build::*;
use trans::cleanup::{CleanupMethods, ScopeId};
use trans::common::*;
use trans::datum::{Datum, DatumBlock, Expr, Lvalue, rvalue_scratch_datum};
use trans::debuginfo;
use trans::expr;
use trans::monomorphize::MonoId;
use trans::type_of::*;
use trans::type_::Type;
use middle::ty::{mod, Ty};
use middle::subst::{Subst, Substs};
use session::config::FullDebugInfo;
use util::ppaux::Repr;
use util::ppaux::ty_to_string;
use arena::TypedArena;
use syntax::ast;
use syntax::ast_util;
// ___Good to know (tm)__________________________________________________
//
// The layout of a closure environment in memory is
// roughly as follows:
//
// struct rust_opaque_box { // see rust_internal.h
// unsigned ref_count; // obsolete (part of @T's header)
// fn(void*) *drop_glue; // destructor (for proc)
// rust_opaque_box *prev; // obsolete (part of @T's header)
// rust_opaque_box *next; // obsolete (part of @T's header)
// struct closure_data {
// upvar1_t upvar1;
// ...
// upvarN_t upvarN;
// }
// };
//
// Note that the closure is itself a rust_opaque_box. This is true
// even for ~fn and ||, because we wish to keep binary compatibility
// between all kinds of closures. The allocation strategy for this
// closure depends on the closure type. For a sendfn, the closure
// (and the referenced type descriptors) will be allocated in the
// exchange heap. For a fn, the closure is allocated in the task heap
// and is reference counted. For a block, the closure is allocated on
// the stack.
//
// ## Opaque closures and the embedded type descriptor ##
//
// One interesting part of closures is that they encapsulate the data
// that they close over. So when I have a ptr to a closure, I do not
// know how many type descriptors it contains nor what upvars are
// captured within. That means I do not know precisely how big it is
// nor where its fields are located. This is called an "opaque
// closure".
//
// Typically an opaque closure suffices because we only manipulate it
// by ptr. The routine Type::at_box().ptr_to() returns an appropriate
// type for such an opaque closure; it allows access to the box fields,
// but not the closure_data itself.
//
// But sometimes, such as when cloning or freeing a closure, we need
// to know the full information. That is where the type descriptor
// that defines the closure comes in handy. We can use its take and
// drop glue functions to allocate/free data as needed.
//
// ## Subtleties concerning alignment ##
//
// It is important that we be able to locate the closure data *without
// knowing the kind of data that is being bound*. This can be tricky
// because the alignment requirements of the bound data affects the
// alignment requires of the closure_data struct as a whole. However,
// right now this is a non-issue in any case, because the size of the
// rust_opaque_box header is always a multiple of 16-bytes, which is
// the maximum alignment requirement we ever have to worry about.
//
// The only reason alignment matters is that, in order to learn what data
// is bound, we would normally first load the type descriptors: but their
// location is ultimately depend on their content! There is, however, a
// workaround. We can load the tydesc from the rust_opaque_box, which
// describes the closure_data struct and has self-contained derived type
// descriptors, and read the alignment from there. It's just annoying to
// do. Hopefully should this ever become an issue we'll have monomorphized
// and type descriptors will all be a bad dream.
//
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#[deriving(Copy)]
pub struct EnvValue<'tcx> {
action: ast::CaptureClause,
datum: Datum<'tcx, Lvalue>
}
impl<'tcx> EnvValue<'tcx> {
pub fn to_string<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> String {
format!("{}({})", self.action, self.datum.to_string(ccx))
}
}
// Given a closure ty, emits a corresponding tuple ty
pub fn mk_closure_tys<'tcx>(tcx: &ty::ctxt<'tcx>,
bound_values: &[EnvValue<'tcx>])
-> Ty<'tcx> {
// determine the types of the values in the env. Note that this
// is the actual types that will be stored in the map, not the
// logical types as the user sees them, so by-ref upvars must be
// converted to ptrs.
let bound_tys = bound_values.iter().map(|bv| {
match bv.action {
ast::CaptureByValue => bv.datum.ty,
ast::CaptureByRef => ty::mk_mut_ptr(tcx, bv.datum.ty)
}
}).collect();
let cdata_ty = ty::mk_tup(tcx, bound_tys);
debug!("cdata_ty={}", ty_to_string(tcx, cdata_ty));
return cdata_ty;
}
fn tuplify_box_ty<'tcx>(tcx: &ty::ctxt<'tcx>, t: Ty<'tcx>) -> Ty<'tcx> {
let ptr = ty::mk_imm_ptr(tcx, tcx.types.i8);
ty::mk_tup(tcx, vec!(tcx.types.uint, ty::mk_nil_ptr(tcx), ptr, ptr, t))
}
fn allocate_cbox<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
store: ty::TraitStore,
cdata_ty: Ty<'tcx>)
-> Result<'blk, 'tcx> {
let _icx = push_ctxt("closure::allocate_cbox");
let tcx = bcx.tcx();
// Allocate and initialize the box:
let cbox_ty = tuplify_box_ty(tcx, cdata_ty);
match store {
ty::UniqTraitStore => {
malloc_raw_dyn_proc(bcx, cbox_ty)
}
ty::RegionTraitStore(..) => {
let llbox = alloc_ty(bcx, cbox_ty, "__closure");
Result::new(bcx, llbox)
}
}
}
pub struct ClosureResult<'blk, 'tcx: 'blk> {
llbox: ValueRef, // llvalue of ptr to closure
cdata_ty: Ty<'tcx>, // type of the closure data
bcx: Block<'blk, 'tcx> // final bcx
}
// Given a block context and a list of tydescs and values to bind
// construct a closure out of them. If copying is true, it is a
// heap allocated closure that copies the upvars into environment.
// Otherwise, it is stack allocated and copies pointers to the upvars.
pub fn store_environment<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
bound_values: Vec<EnvValue<'tcx>> ,
store: ty::TraitStore)
-> ClosureResult<'blk, 'tcx> {
let _icx = push_ctxt("closure::store_environment");
let ccx = bcx.ccx();
let tcx = ccx.tcx();
// compute the type of the closure
let cdata_ty = mk_closure_tys(tcx, bound_values[]);
// cbox_ty has the form of a tuple: (a, b, c) we want a ptr to a
// tuple. This could be a ptr in uniq or a box or on stack,
// whatever.
let cbox_ty = tuplify_box_ty(tcx, cdata_ty);
let cboxptr_ty = ty::mk_ptr(tcx, ty::mt {ty:cbox_ty, mutbl:ast::MutImmutable});
let llboxptr_ty = type_of(ccx, cboxptr_ty);
// If there are no bound values, no point in allocating anything.
if bound_values.is_empty() {
return ClosureResult {llbox: C_null(llboxptr_ty),
cdata_ty: cdata_ty,
bcx: bcx};
}
// allocate closure in the heap
let Result {bcx, val: llbox} = allocate_cbox(bcx, store, cdata_ty);
let llbox = PointerCast(bcx, llbox, llboxptr_ty);
debug!("tuplify_box_ty = {}", ty_to_string(tcx, cbox_ty));
// Copy expr values into boxed bindings.
let mut bcx = bcx;
for (i, bv) in bound_values.into_iter().enumerate() {
debug!("Copy {} into closure", bv.to_string(ccx));
if ccx.sess().asm_comments() {
add_comment(bcx, format!("Copy {} into closure",
bv.to_string(ccx))[]);
}
let bound_data = GEPi(bcx, llbox, &[0u, abi::BOX_FIELD_BODY, i]);
match bv.action {
ast::CaptureByValue => {
bcx = bv.datum.store_to(bcx, bound_data);
}
ast::CaptureByRef => {
Store(bcx, bv.datum.to_llref(), bound_data);
}
}
}
ClosureResult { llbox: llbox, cdata_ty: cdata_ty, bcx: bcx }
}
// Given a context and a list of upvars, build a closure. This just
// collects the upvars and packages them up for store_environment.
fn build_closure<'blk, 'tcx>(bcx0: Block<'blk, 'tcx>,
freevar_mode: ast::CaptureClause,
freevars: &Vec<ty::Freevar>,
store: ty::TraitStore)
-> ClosureResult<'blk, 'tcx> {
let _icx = push_ctxt("closure::build_closure");
// If we need to, package up the iterator body to call
let bcx = bcx0;
// Package up the captured upvars
let mut env_vals = Vec::new();
for freevar in freevars.iter() {
let datum = expr::trans_local_var(bcx, freevar.def);
env_vals.push(EnvValue {action: freevar_mode, datum: datum});
}
store_environment(bcx, env_vals, store)
}
// Given an enclosing block context, a new function context, a closure type,
// and a list of upvars, generate code to load and populate the environment
// with the upvars and type descriptors.
fn load_environment<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
cdata_ty: Ty<'tcx>,
freevars: &[ty::Freevar],
store: ty::TraitStore)
-> Block<'blk, 'tcx> {
let _icx = push_ctxt("closure::load_environment");
// Load a pointer to the closure data, skipping over the box header:
let llcdata = at_box_body(bcx, cdata_ty, bcx.fcx.llenv.unwrap());
// Store the pointer to closure data in an alloca for debug info because that's what the
// llvm.dbg.declare intrinsic expects
let env_pointer_alloca = if bcx.sess().opts.debuginfo == FullDebugInfo {
let alloc = alloc_ty(bcx, ty::mk_mut_ptr(bcx.tcx(), cdata_ty), "__debuginfo_env_ptr");
Store(bcx, llcdata, alloc);
Some(alloc)
} else {
None
};
// Populate the upvars from the environment
let mut i = 0u;
for freevar in freevars.iter() {
let mut upvarptr = GEPi(bcx, llcdata, &[0u, i]);
let captured_by_ref = match store {
ty::RegionTraitStore(..) => {
upvarptr = Load(bcx, upvarptr);
true
}
ty::UniqTraitStore => false
};
let def_id = freevar.def.def_id();
bcx.fcx.llupvars.borrow_mut().insert(def_id.node, upvarptr);
if let Some(env_pointer_alloca) = env_pointer_alloca {
debuginfo::create_captured_var_metadata(
bcx,
def_id.node,
env_pointer_alloca,
i,
captured_by_ref,
freevar.span);
}
i += 1u;
}
bcx
}
fn load_unboxed_closure_environment<'blk, 'tcx>(
bcx: Block<'blk, 'tcx>,
arg_scope_id: ScopeId,
freevar_mode: ast::CaptureClause,
freevars: &[ty::Freevar])
-> Block<'blk, 'tcx> {
let _icx = push_ctxt("closure::load_environment");
// Special case for small by-value selfs.
let closure_id = ast_util::local_def(bcx.fcx.id);
let self_type = self_type_for_unboxed_closure(bcx.ccx(), closure_id,
node_id_type(bcx, closure_id.node));
let kind = kind_for_unboxed_closure(bcx.ccx(), closure_id);
let llenv = if kind == ty::FnOnceUnboxedClosureKind &&
!arg_is_indirect(bcx.ccx(), self_type) {
let datum = rvalue_scratch_datum(bcx,
self_type,
"unboxed_closure_env");
store_ty(bcx, bcx.fcx.llenv.unwrap(), datum.val, self_type);
datum.val
} else {
bcx.fcx.llenv.unwrap()
};
// Store the pointer to closure data in an alloca for debug info because that's what the
// llvm.dbg.declare intrinsic expects
let env_pointer_alloca = if bcx.sess().opts.debuginfo == FullDebugInfo {
let alloc = alloca(bcx, val_ty(llenv), "__debuginfo_env_ptr");
Store(bcx, llenv, alloc);
Some(alloc)
} else {
None
};
for (i, freevar) in freevars.iter().enumerate() {
let mut upvar_ptr = GEPi(bcx, llenv, &[0, i]);
let captured_by_ref = match freevar_mode {
ast::CaptureByRef => {
upvar_ptr = Load(bcx, upvar_ptr);
true
}
ast::CaptureByValue => false
};
let def_id = freevar.def.def_id();
bcx.fcx.llupvars.borrow_mut().insert(def_id.node, upvar_ptr);
if kind == ty::FnOnceUnboxedClosureKind && freevar_mode == ast::CaptureByValue {
bcx.fcx.schedule_drop_mem(arg_scope_id,
upvar_ptr,
node_id_type(bcx, def_id.node))
}
if let Some(env_pointer_alloca) = env_pointer_alloca {
debuginfo::create_captured_var_metadata(
bcx,
def_id.node,
env_pointer_alloca,
i,
captured_by_ref,
freevar.span);
}
}
bcx
}
fn fill_fn_pair(bcx: Block, pair: ValueRef, llfn: ValueRef, llenvptr: ValueRef) {
Store(bcx, llfn, GEPi(bcx, pair, &[0u, abi::FAT_PTR_ADDR]));
let llenvptr = PointerCast(bcx, llenvptr, Type::i8p(bcx.ccx()));
Store(bcx, llenvptr, GEPi(bcx, pair, &[0u, abi::FAT_PTR_EXTRA]));
}
#[deriving(PartialEq)]
pub enum ClosureKind<'tcx> {
NotClosure,
// See load_environment.
BoxedClosure(Ty<'tcx>, ty::TraitStore),
// See load_unboxed_closure_environment.
UnboxedClosure(ast::CaptureClause)
}
pub struct ClosureEnv<'a, 'tcx> {
freevars: &'a [ty::Freevar],
pub kind: ClosureKind<'tcx>
}
impl<'a, 'tcx> ClosureEnv<'a, 'tcx> {
pub fn new(freevars: &'a [ty::Freevar], kind: ClosureKind<'tcx>)
-> ClosureEnv<'a, 'tcx> {
ClosureEnv {
freevars: freevars,
kind: kind
}
}
pub fn load<'blk>(self, bcx: Block<'blk, 'tcx>, arg_scope: ScopeId)
-> Block<'blk, 'tcx> {
// Don't bother to create the block if there's nothing to load
if self.freevars.is_empty() {
return bcx;
}
match self.kind {
NotClosure => bcx,
BoxedClosure(cdata_ty, store) => {
load_environment(bcx, cdata_ty, self.freevars, store)
}
UnboxedClosure(freevar_mode) => {
load_unboxed_closure_environment(bcx, arg_scope, freevar_mode, self.freevars)
}
}
}
}
/// Translates the body of a closure expression.
///
/// - `store`
/// - `decl`
/// - `body`
/// - `id`: The id of the closure expression.
/// - `cap_clause`: information about captured variables, if any.
/// - `dest`: where to write the closure value, which must be a
/// (fn ptr, env) pair
pub fn trans_expr_fn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
store: ty::TraitStore,
decl: &ast::FnDecl,
body: &ast::Block,
id: ast::NodeId,
dest: expr::Dest)
-> Block<'blk, 'tcx> {
let _icx = push_ctxt("closure::trans_expr_fn");
let dest_addr = match dest {
expr::SaveIn(p) => p,
expr::Ignore => {
return bcx; // closure construction is non-side-effecting
}
};
let ccx = bcx.ccx();
let tcx = bcx.tcx();
let fty = node_id_type(bcx, id);
let s = tcx.map.with_path(id, |path| {
mangle_internal_name_by_path_and_seq(path, "closure")
});
let llfn = decl_internal_rust_fn(ccx, fty, s[]);
// set an inline hint for all closures
set_inline_hint(llfn);
let freevar_mode = tcx.capture_mode(id);
let freevars: Vec<ty::Freevar> =
ty::with_freevars(tcx, id, |fv| fv.iter().map(|&fv| fv).collect());
let ClosureResult {
llbox,
cdata_ty,
bcx
} = build_closure(bcx, freevar_mode, &freevars, store);
trans_closure(ccx,
decl,
body,
llfn,
bcx.fcx.param_substs,
id,
&[],
ty::ty_fn_ret(fty),
ty::ty_fn_abi(fty),
ClosureEnv::new(freevars[],
BoxedClosure(cdata_ty, store)));
fill_fn_pair(bcx, dest_addr, llfn, llbox);
bcx
}
/// Returns the LLVM function declaration for an unboxed closure, creating it
/// if necessary. If the ID does not correspond to a closure ID, returns None.
pub fn get_or_create_declaration_if_unboxed_closure<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
closure_id: ast::DefId,
substs: &Substs<'tcx>)
-> Option<ValueRef> {
let ccx = bcx.ccx();
if !ccx.tcx().unboxed_closures.borrow().contains_key(&closure_id) {
// Not an unboxed closure.
return None
}
let function_type = ty::node_id_to_type(bcx.tcx(), closure_id.node);
let function_type = function_type.subst(bcx.tcx(), substs);
// Normalize type so differences in regions and typedefs don't cause
// duplicate declarations
let function_type = ty::normalize_ty(bcx.tcx(), function_type);
let params = match function_type.sty {
ty::ty_unboxed_closure(_, _, ref substs) => substs.types.clone(),
_ => unreachable!()
};
let mono_id = MonoId {
def: closure_id,
params: params
};
match ccx.unboxed_closure_vals().borrow().get(&mono_id) {
Some(llfn) => {
debug!("get_or_create_declaration_if_unboxed_closure(): found \
closure");
return Some(*llfn)
}
None => {}
}
let symbol = ccx.tcx().map.with_path(closure_id.node, |path| {
mangle_internal_name_by_path_and_seq(path, "unboxed_closure")
});
let llfn = decl_internal_rust_fn(ccx, function_type, symbol[]);
// set an inline hint for all closures
set_inline_hint(llfn);
debug!("get_or_create_declaration_if_unboxed_closure(): inserting new \
closure {} (type {})",
mono_id,
ccx.tn().type_to_string(val_ty(llfn)));
ccx.unboxed_closure_vals().borrow_mut().insert(mono_id, llfn);
Some(llfn)
}
pub fn trans_unboxed_closure<'blk, 'tcx>(
mut bcx: Block<'blk, 'tcx>,
decl: &ast::FnDecl,
body: &ast::Block,
id: ast::NodeId,
dest: expr::Dest)
-> Block<'blk, 'tcx> {
let _icx = push_ctxt("closure::trans_unboxed_closure");
debug!("trans_unboxed_closure()");
let closure_id = ast_util::local_def(id);
let llfn = get_or_create_declaration_if_unboxed_closure(
bcx,
closure_id,
bcx.fcx.param_substs).unwrap();
let function_type = (*bcx.tcx().unboxed_closures.borrow())[closure_id]
.closure_type
.clone();
let function_type = ty::mk_closure(bcx.tcx(), function_type);
let freevars: Vec<ty::Freevar> =
ty::with_freevars(bcx.tcx(), id, |fv| fv.iter().map(|&fv| fv).collect());
let freevar_mode = bcx.tcx().capture_mode(id);
trans_closure(bcx.ccx(),
decl,
body,
llfn,
bcx.fcx.param_substs,
id,
&[],
ty::ty_fn_ret(function_type),
ty::ty_fn_abi(function_type),
ClosureEnv::new(freevars[],
UnboxedClosure(freevar_mode)));
// Don't hoist this to the top of the function. It's perfectly legitimate
// to have a zero-size unboxed closure (in which case dest will be
// `Ignore`) and we must still generate the closure body.
let dest_addr = match dest {
expr::SaveIn(p) => p,
expr::Ignore => {
debug!("trans_unboxed_closure() ignoring result");
return bcx
}
};
let repr = adt::represent_type(bcx.ccx(), node_id_type(bcx, id));
// Create the closure.
for (i, freevar) in freevars.iter().enumerate() {
let datum = expr::trans_local_var(bcx, freevar.def);
let upvar_slot_dest = adt::trans_field_ptr(bcx,
&*repr,
dest_addr,
0,
i);
match freevar_mode {
ast::CaptureByValue => {
bcx = datum.store_to(bcx, upvar_slot_dest);
}
ast::CaptureByRef => {
Store(bcx, datum.to_llref(), upvar_slot_dest);
}
}
}
adt::trans_set_discr(bcx, &*repr, dest_addr, 0);
bcx
}
pub fn get_wrapper_for_bare_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
closure_ty: Ty<'tcx>,
def_id: ast::DefId,
fn_ptr: ValueRef,
is_local: bool) -> ValueRef {
match ccx.closure_bare_wrapper_cache().borrow().get(&fn_ptr) {
Some(&llval) => return llval,
None => {}
}
let tcx = ccx.tcx();
debug!("get_wrapper_for_bare_fn(closure_ty={})", closure_ty.repr(tcx));
let f = match closure_ty.sty {
ty::ty_closure(ref f) => f,
_ => {
ccx.sess().bug(format!("get_wrapper_for_bare_fn: \
expected a closure ty, got {}",
closure_ty.repr(tcx))[]);
}
};
let name = ty::with_path(tcx, def_id, |path| {
mangle_internal_name_by_path_and_seq(path, "as_closure")
});
let llfn = if is_local {
decl_internal_rust_fn(ccx, closure_ty, name[])
} else {
decl_rust_fn(ccx, closure_ty, name[])
};
ccx.closure_bare_wrapper_cache().borrow_mut().insert(fn_ptr, llfn);
// This is only used by statics inlined from a different crate.
if !is_local {
// Don't regenerate the wrapper, just reuse the original one.
return llfn;
}
let _icx = push_ctxt("closure::get_wrapper_for_bare_fn");
let arena = TypedArena::new();
let empty_param_substs = Substs::trans_empty();
let fcx = new_fn_ctxt(ccx, llfn, ast::DUMMY_NODE_ID, true, f.sig.0.output,
&empty_param_substs, None, &arena);
let bcx = init_function(&fcx, true, f.sig.0.output);
let args = create_datums_for_fn_args(&fcx,
ty::ty_fn_args(closure_ty)
[]);
let mut llargs = Vec::new();
match fcx.llretslotptr.get() {
Some(llretptr) => {
assert!(!fcx.needs_ret_allocas);
llargs.push(llretptr);
}
None => {}
}
llargs.extend(args.iter().map(|arg| arg.val));
let retval = Call(bcx, fn_ptr, llargs.as_slice(), None);
match f.sig.0.output {
ty::FnConverging(output_type) => {
if return_type_is_void(ccx, output_type) || fcx.llretslotptr.get().is_some() {
RetVoid(bcx);
} else {
Ret(bcx, retval);
}
}
ty::FnDiverging => {
RetVoid(bcx);
}
}
// HACK(eddyb) finish_fn cannot be used here, we returned directly.
debuginfo::clear_source_location(&fcx);
fcx.cleanup();
llfn
}
pub fn make_closure_from_bare_fn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
closure_ty: Ty<'tcx>,
def_id: ast::DefId,
fn_ptr: ValueRef)
-> DatumBlock<'blk, 'tcx, Expr> {
let scratch = rvalue_scratch_datum(bcx, closure_ty, "__adjust");
let wrapper = get_wrapper_for_bare_fn(bcx.ccx(), closure_ty, def_id, fn_ptr, true);
fill_fn_pair(bcx, scratch.val, wrapper, C_null(Type::i8p(bcx.ccx())));
DatumBlock::new(bcx, scratch.to_expr_datum())
}