// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. pub use self::ClosureKind::*; use back::abi; use back::link::mangle_internal_name_by_path_and_seq; use llvm::ValueRef; use middle::mem_categorization::Typer; use trans::adt; use trans::base::*; use trans::build::*; use trans::cleanup::{CleanupMethods, ScopeId}; use trans::common::*; use trans::datum::{Datum, DatumBlock, Expr, Lvalue, rvalue_scratch_datum}; use trans::debuginfo; use trans::expr; use trans::monomorphize::MonoId; use trans::type_of::*; use trans::type_::Type; use middle::ty::{mod, Ty}; use middle::subst::{Subst, Substs}; use session::config::FullDebugInfo; use util::ppaux::Repr; use util::ppaux::ty_to_string; use arena::TypedArena; use syntax::ast; use syntax::ast_util; // ___Good to know (tm)__________________________________________________ // // The layout of a closure environment in memory is // roughly as follows: // // struct rust_opaque_box { // see rust_internal.h // unsigned ref_count; // obsolete (part of @T's header) // fn(void*) *drop_glue; // destructor (for proc) // rust_opaque_box *prev; // obsolete (part of @T's header) // rust_opaque_box *next; // obsolete (part of @T's header) // struct closure_data { // upvar1_t upvar1; // ... // upvarN_t upvarN; // } // }; // // Note that the closure is itself a rust_opaque_box. This is true // even for ~fn and ||, because we wish to keep binary compatibility // between all kinds of closures. The allocation strategy for this // closure depends on the closure type. For a sendfn, the closure // (and the referenced type descriptors) will be allocated in the // exchange heap. For a fn, the closure is allocated in the task heap // and is reference counted. For a block, the closure is allocated on // the stack. // // ## Opaque closures and the embedded type descriptor ## // // One interesting part of closures is that they encapsulate the data // that they close over. So when I have a ptr to a closure, I do not // know how many type descriptors it contains nor what upvars are // captured within. That means I do not know precisely how big it is // nor where its fields are located. This is called an "opaque // closure". // // Typically an opaque closure suffices because we only manipulate it // by ptr. The routine Type::at_box().ptr_to() returns an appropriate // type for such an opaque closure; it allows access to the box fields, // but not the closure_data itself. // // But sometimes, such as when cloning or freeing a closure, we need // to know the full information. That is where the type descriptor // that defines the closure comes in handy. We can use its take and // drop glue functions to allocate/free data as needed. // // ## Subtleties concerning alignment ## // // It is important that we be able to locate the closure data *without // knowing the kind of data that is being bound*. This can be tricky // because the alignment requirements of the bound data affects the // alignment requires of the closure_data struct as a whole. However, // right now this is a non-issue in any case, because the size of the // rust_opaque_box header is always a multiple of 16-bytes, which is // the maximum alignment requirement we ever have to worry about. // // The only reason alignment matters is that, in order to learn what data // is bound, we would normally first load the type descriptors: but their // location is ultimately depend on their content! There is, however, a // workaround. We can load the tydesc from the rust_opaque_box, which // describes the closure_data struct and has self-contained derived type // descriptors, and read the alignment from there. It's just annoying to // do. Hopefully should this ever become an issue we'll have monomorphized // and type descriptors will all be a bad dream. // // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #[deriving(Copy)] pub struct EnvValue<'tcx> { action: ast::CaptureClause, datum: Datum<'tcx, Lvalue> } impl<'tcx> EnvValue<'tcx> { pub fn to_string<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> String { format!("{}({})", self.action, self.datum.to_string(ccx)) } } // Given a closure ty, emits a corresponding tuple ty pub fn mk_closure_tys<'tcx>(tcx: &ty::ctxt<'tcx>, bound_values: &[EnvValue<'tcx>]) -> Ty<'tcx> { // determine the types of the values in the env. Note that this // is the actual types that will be stored in the map, not the // logical types as the user sees them, so by-ref upvars must be // converted to ptrs. let bound_tys = bound_values.iter().map(|bv| { match bv.action { ast::CaptureByValue => bv.datum.ty, ast::CaptureByRef => ty::mk_mut_ptr(tcx, bv.datum.ty) } }).collect(); let cdata_ty = ty::mk_tup(tcx, bound_tys); debug!("cdata_ty={}", ty_to_string(tcx, cdata_ty)); return cdata_ty; } fn tuplify_box_ty<'tcx>(tcx: &ty::ctxt<'tcx>, t: Ty<'tcx>) -> Ty<'tcx> { let ptr = ty::mk_imm_ptr(tcx, tcx.types.i8); ty::mk_tup(tcx, vec!(tcx.types.uint, ty::mk_nil_ptr(tcx), ptr, ptr, t)) } fn allocate_cbox<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, store: ty::TraitStore, cdata_ty: Ty<'tcx>) -> Result<'blk, 'tcx> { let _icx = push_ctxt("closure::allocate_cbox"); let tcx = bcx.tcx(); // Allocate and initialize the box: let cbox_ty = tuplify_box_ty(tcx, cdata_ty); match store { ty::UniqTraitStore => { malloc_raw_dyn_proc(bcx, cbox_ty) } ty::RegionTraitStore(..) => { let llbox = alloc_ty(bcx, cbox_ty, "__closure"); Result::new(bcx, llbox) } } } pub struct ClosureResult<'blk, 'tcx: 'blk> { llbox: ValueRef, // llvalue of ptr to closure cdata_ty: Ty<'tcx>, // type of the closure data bcx: Block<'blk, 'tcx> // final bcx } // Given a block context and a list of tydescs and values to bind // construct a closure out of them. If copying is true, it is a // heap allocated closure that copies the upvars into environment. // Otherwise, it is stack allocated and copies pointers to the upvars. pub fn store_environment<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, bound_values: Vec> , store: ty::TraitStore) -> ClosureResult<'blk, 'tcx> { let _icx = push_ctxt("closure::store_environment"); let ccx = bcx.ccx(); let tcx = ccx.tcx(); // compute the type of the closure let cdata_ty = mk_closure_tys(tcx, bound_values[]); // cbox_ty has the form of a tuple: (a, b, c) we want a ptr to a // tuple. This could be a ptr in uniq or a box or on stack, // whatever. let cbox_ty = tuplify_box_ty(tcx, cdata_ty); let cboxptr_ty = ty::mk_ptr(tcx, ty::mt {ty:cbox_ty, mutbl:ast::MutImmutable}); let llboxptr_ty = type_of(ccx, cboxptr_ty); // If there are no bound values, no point in allocating anything. if bound_values.is_empty() { return ClosureResult {llbox: C_null(llboxptr_ty), cdata_ty: cdata_ty, bcx: bcx}; } // allocate closure in the heap let Result {bcx, val: llbox} = allocate_cbox(bcx, store, cdata_ty); let llbox = PointerCast(bcx, llbox, llboxptr_ty); debug!("tuplify_box_ty = {}", ty_to_string(tcx, cbox_ty)); // Copy expr values into boxed bindings. let mut bcx = bcx; for (i, bv) in bound_values.into_iter().enumerate() { debug!("Copy {} into closure", bv.to_string(ccx)); if ccx.sess().asm_comments() { add_comment(bcx, format!("Copy {} into closure", bv.to_string(ccx))[]); } let bound_data = GEPi(bcx, llbox, &[0u, abi::BOX_FIELD_BODY, i]); match bv.action { ast::CaptureByValue => { bcx = bv.datum.store_to(bcx, bound_data); } ast::CaptureByRef => { Store(bcx, bv.datum.to_llref(), bound_data); } } } ClosureResult { llbox: llbox, cdata_ty: cdata_ty, bcx: bcx } } // Given a context and a list of upvars, build a closure. This just // collects the upvars and packages them up for store_environment. fn build_closure<'blk, 'tcx>(bcx0: Block<'blk, 'tcx>, freevar_mode: ast::CaptureClause, freevars: &Vec, store: ty::TraitStore) -> ClosureResult<'blk, 'tcx> { let _icx = push_ctxt("closure::build_closure"); // If we need to, package up the iterator body to call let bcx = bcx0; // Package up the captured upvars let mut env_vals = Vec::new(); for freevar in freevars.iter() { let datum = expr::trans_local_var(bcx, freevar.def); env_vals.push(EnvValue {action: freevar_mode, datum: datum}); } store_environment(bcx, env_vals, store) } // Given an enclosing block context, a new function context, a closure type, // and a list of upvars, generate code to load and populate the environment // with the upvars and type descriptors. fn load_environment<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, cdata_ty: Ty<'tcx>, freevars: &[ty::Freevar], store: ty::TraitStore) -> Block<'blk, 'tcx> { let _icx = push_ctxt("closure::load_environment"); // Load a pointer to the closure data, skipping over the box header: let llcdata = at_box_body(bcx, cdata_ty, bcx.fcx.llenv.unwrap()); // Store the pointer to closure data in an alloca for debug info because that's what the // llvm.dbg.declare intrinsic expects let env_pointer_alloca = if bcx.sess().opts.debuginfo == FullDebugInfo { let alloc = alloc_ty(bcx, ty::mk_mut_ptr(bcx.tcx(), cdata_ty), "__debuginfo_env_ptr"); Store(bcx, llcdata, alloc); Some(alloc) } else { None }; // Populate the upvars from the environment let mut i = 0u; for freevar in freevars.iter() { let mut upvarptr = GEPi(bcx, llcdata, &[0u, i]); let captured_by_ref = match store { ty::RegionTraitStore(..) => { upvarptr = Load(bcx, upvarptr); true } ty::UniqTraitStore => false }; let def_id = freevar.def.def_id(); bcx.fcx.llupvars.borrow_mut().insert(def_id.node, upvarptr); if let Some(env_pointer_alloca) = env_pointer_alloca { debuginfo::create_captured_var_metadata( bcx, def_id.node, env_pointer_alloca, i, captured_by_ref, freevar.span); } i += 1u; } bcx } fn load_unboxed_closure_environment<'blk, 'tcx>( bcx: Block<'blk, 'tcx>, arg_scope_id: ScopeId, freevar_mode: ast::CaptureClause, freevars: &[ty::Freevar]) -> Block<'blk, 'tcx> { let _icx = push_ctxt("closure::load_environment"); // Special case for small by-value selfs. let closure_id = ast_util::local_def(bcx.fcx.id); let self_type = self_type_for_unboxed_closure(bcx.ccx(), closure_id, node_id_type(bcx, closure_id.node)); let kind = kind_for_unboxed_closure(bcx.ccx(), closure_id); let llenv = if kind == ty::FnOnceUnboxedClosureKind && !arg_is_indirect(bcx.ccx(), self_type) { let datum = rvalue_scratch_datum(bcx, self_type, "unboxed_closure_env"); store_ty(bcx, bcx.fcx.llenv.unwrap(), datum.val, self_type); datum.val } else { bcx.fcx.llenv.unwrap() }; // Store the pointer to closure data in an alloca for debug info because that's what the // llvm.dbg.declare intrinsic expects let env_pointer_alloca = if bcx.sess().opts.debuginfo == FullDebugInfo { let alloc = alloca(bcx, val_ty(llenv), "__debuginfo_env_ptr"); Store(bcx, llenv, alloc); Some(alloc) } else { None }; for (i, freevar) in freevars.iter().enumerate() { let mut upvar_ptr = GEPi(bcx, llenv, &[0, i]); let captured_by_ref = match freevar_mode { ast::CaptureByRef => { upvar_ptr = Load(bcx, upvar_ptr); true } ast::CaptureByValue => false }; let def_id = freevar.def.def_id(); bcx.fcx.llupvars.borrow_mut().insert(def_id.node, upvar_ptr); if kind == ty::FnOnceUnboxedClosureKind && freevar_mode == ast::CaptureByValue { bcx.fcx.schedule_drop_mem(arg_scope_id, upvar_ptr, node_id_type(bcx, def_id.node)) } if let Some(env_pointer_alloca) = env_pointer_alloca { debuginfo::create_captured_var_metadata( bcx, def_id.node, env_pointer_alloca, i, captured_by_ref, freevar.span); } } bcx } fn fill_fn_pair(bcx: Block, pair: ValueRef, llfn: ValueRef, llenvptr: ValueRef) { Store(bcx, llfn, GEPi(bcx, pair, &[0u, abi::FAT_PTR_ADDR])); let llenvptr = PointerCast(bcx, llenvptr, Type::i8p(bcx.ccx())); Store(bcx, llenvptr, GEPi(bcx, pair, &[0u, abi::FAT_PTR_EXTRA])); } #[deriving(PartialEq)] pub enum ClosureKind<'tcx> { NotClosure, // See load_environment. BoxedClosure(Ty<'tcx>, ty::TraitStore), // See load_unboxed_closure_environment. UnboxedClosure(ast::CaptureClause) } pub struct ClosureEnv<'a, 'tcx> { freevars: &'a [ty::Freevar], pub kind: ClosureKind<'tcx> } impl<'a, 'tcx> ClosureEnv<'a, 'tcx> { pub fn new(freevars: &'a [ty::Freevar], kind: ClosureKind<'tcx>) -> ClosureEnv<'a, 'tcx> { ClosureEnv { freevars: freevars, kind: kind } } pub fn load<'blk>(self, bcx: Block<'blk, 'tcx>, arg_scope: ScopeId) -> Block<'blk, 'tcx> { // Don't bother to create the block if there's nothing to load if self.freevars.is_empty() { return bcx; } match self.kind { NotClosure => bcx, BoxedClosure(cdata_ty, store) => { load_environment(bcx, cdata_ty, self.freevars, store) } UnboxedClosure(freevar_mode) => { load_unboxed_closure_environment(bcx, arg_scope, freevar_mode, self.freevars) } } } } /// Translates the body of a closure expression. /// /// - `store` /// - `decl` /// - `body` /// - `id`: The id of the closure expression. /// - `cap_clause`: information about captured variables, if any. /// - `dest`: where to write the closure value, which must be a /// (fn ptr, env) pair pub fn trans_expr_fn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, store: ty::TraitStore, decl: &ast::FnDecl, body: &ast::Block, id: ast::NodeId, dest: expr::Dest) -> Block<'blk, 'tcx> { let _icx = push_ctxt("closure::trans_expr_fn"); let dest_addr = match dest { expr::SaveIn(p) => p, expr::Ignore => { return bcx; // closure construction is non-side-effecting } }; let ccx = bcx.ccx(); let tcx = bcx.tcx(); let fty = node_id_type(bcx, id); let s = tcx.map.with_path(id, |path| { mangle_internal_name_by_path_and_seq(path, "closure") }); let llfn = decl_internal_rust_fn(ccx, fty, s[]); // set an inline hint for all closures set_inline_hint(llfn); let freevar_mode = tcx.capture_mode(id); let freevars: Vec = ty::with_freevars(tcx, id, |fv| fv.iter().map(|&fv| fv).collect()); let ClosureResult { llbox, cdata_ty, bcx } = build_closure(bcx, freevar_mode, &freevars, store); trans_closure(ccx, decl, body, llfn, bcx.fcx.param_substs, id, &[], ty::ty_fn_ret(fty), ty::ty_fn_abi(fty), ClosureEnv::new(freevars[], BoxedClosure(cdata_ty, store))); fill_fn_pair(bcx, dest_addr, llfn, llbox); bcx } /// Returns the LLVM function declaration for an unboxed closure, creating it /// if necessary. If the ID does not correspond to a closure ID, returns None. pub fn get_or_create_declaration_if_unboxed_closure<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, closure_id: ast::DefId, substs: &Substs<'tcx>) -> Option { let ccx = bcx.ccx(); if !ccx.tcx().unboxed_closures.borrow().contains_key(&closure_id) { // Not an unboxed closure. return None } let function_type = ty::node_id_to_type(bcx.tcx(), closure_id.node); let function_type = function_type.subst(bcx.tcx(), substs); // Normalize type so differences in regions and typedefs don't cause // duplicate declarations let function_type = ty::normalize_ty(bcx.tcx(), function_type); let params = match function_type.sty { ty::ty_unboxed_closure(_, _, ref substs) => substs.types.clone(), _ => unreachable!() }; let mono_id = MonoId { def: closure_id, params: params }; match ccx.unboxed_closure_vals().borrow().get(&mono_id) { Some(llfn) => { debug!("get_or_create_declaration_if_unboxed_closure(): found \ closure"); return Some(*llfn) } None => {} } let symbol = ccx.tcx().map.with_path(closure_id.node, |path| { mangle_internal_name_by_path_and_seq(path, "unboxed_closure") }); let llfn = decl_internal_rust_fn(ccx, function_type, symbol[]); // set an inline hint for all closures set_inline_hint(llfn); debug!("get_or_create_declaration_if_unboxed_closure(): inserting new \ closure {} (type {})", mono_id, ccx.tn().type_to_string(val_ty(llfn))); ccx.unboxed_closure_vals().borrow_mut().insert(mono_id, llfn); Some(llfn) } pub fn trans_unboxed_closure<'blk, 'tcx>( mut bcx: Block<'blk, 'tcx>, decl: &ast::FnDecl, body: &ast::Block, id: ast::NodeId, dest: expr::Dest) -> Block<'blk, 'tcx> { let _icx = push_ctxt("closure::trans_unboxed_closure"); debug!("trans_unboxed_closure()"); let closure_id = ast_util::local_def(id); let llfn = get_or_create_declaration_if_unboxed_closure( bcx, closure_id, bcx.fcx.param_substs).unwrap(); let function_type = (*bcx.tcx().unboxed_closures.borrow())[closure_id] .closure_type .clone(); let function_type = ty::mk_closure(bcx.tcx(), function_type); let freevars: Vec = ty::with_freevars(bcx.tcx(), id, |fv| fv.iter().map(|&fv| fv).collect()); let freevar_mode = bcx.tcx().capture_mode(id); trans_closure(bcx.ccx(), decl, body, llfn, bcx.fcx.param_substs, id, &[], ty::ty_fn_ret(function_type), ty::ty_fn_abi(function_type), ClosureEnv::new(freevars[], UnboxedClosure(freevar_mode))); // Don't hoist this to the top of the function. It's perfectly legitimate // to have a zero-size unboxed closure (in which case dest will be // `Ignore`) and we must still generate the closure body. let dest_addr = match dest { expr::SaveIn(p) => p, expr::Ignore => { debug!("trans_unboxed_closure() ignoring result"); return bcx } }; let repr = adt::represent_type(bcx.ccx(), node_id_type(bcx, id)); // Create the closure. for (i, freevar) in freevars.iter().enumerate() { let datum = expr::trans_local_var(bcx, freevar.def); let upvar_slot_dest = adt::trans_field_ptr(bcx, &*repr, dest_addr, 0, i); match freevar_mode { ast::CaptureByValue => { bcx = datum.store_to(bcx, upvar_slot_dest); } ast::CaptureByRef => { Store(bcx, datum.to_llref(), upvar_slot_dest); } } } adt::trans_set_discr(bcx, &*repr, dest_addr, 0); bcx } pub fn get_wrapper_for_bare_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, closure_ty: Ty<'tcx>, def_id: ast::DefId, fn_ptr: ValueRef, is_local: bool) -> ValueRef { match ccx.closure_bare_wrapper_cache().borrow().get(&fn_ptr) { Some(&llval) => return llval, None => {} } let tcx = ccx.tcx(); debug!("get_wrapper_for_bare_fn(closure_ty={})", closure_ty.repr(tcx)); let f = match closure_ty.sty { ty::ty_closure(ref f) => f, _ => { ccx.sess().bug(format!("get_wrapper_for_bare_fn: \ expected a closure ty, got {}", closure_ty.repr(tcx))[]); } }; let name = ty::with_path(tcx, def_id, |path| { mangle_internal_name_by_path_and_seq(path, "as_closure") }); let llfn = if is_local { decl_internal_rust_fn(ccx, closure_ty, name[]) } else { decl_rust_fn(ccx, closure_ty, name[]) }; ccx.closure_bare_wrapper_cache().borrow_mut().insert(fn_ptr, llfn); // This is only used by statics inlined from a different crate. if !is_local { // Don't regenerate the wrapper, just reuse the original one. return llfn; } let _icx = push_ctxt("closure::get_wrapper_for_bare_fn"); let arena = TypedArena::new(); let empty_param_substs = Substs::trans_empty(); let fcx = new_fn_ctxt(ccx, llfn, ast::DUMMY_NODE_ID, true, f.sig.0.output, &empty_param_substs, None, &arena); let bcx = init_function(&fcx, true, f.sig.0.output); let args = create_datums_for_fn_args(&fcx, ty::ty_fn_args(closure_ty) []); let mut llargs = Vec::new(); match fcx.llretslotptr.get() { Some(llretptr) => { assert!(!fcx.needs_ret_allocas); llargs.push(llretptr); } None => {} } llargs.extend(args.iter().map(|arg| arg.val)); let retval = Call(bcx, fn_ptr, llargs.as_slice(), None); match f.sig.0.output { ty::FnConverging(output_type) => { if return_type_is_void(ccx, output_type) || fcx.llretslotptr.get().is_some() { RetVoid(bcx); } else { Ret(bcx, retval); } } ty::FnDiverging => { RetVoid(bcx); } } // HACK(eddyb) finish_fn cannot be used here, we returned directly. debuginfo::clear_source_location(&fcx); fcx.cleanup(); llfn } pub fn make_closure_from_bare_fn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, closure_ty: Ty<'tcx>, def_id: ast::DefId, fn_ptr: ValueRef) -> DatumBlock<'blk, 'tcx, Expr> { let scratch = rvalue_scratch_datum(bcx, closure_ty, "__adjust"); let wrapper = get_wrapper_for_bare_fn(bcx.ccx(), closure_ty, def_id, fn_ptr, true); fill_fn_pair(bcx, scratch.val, wrapper, C_null(Type::i8p(bcx.ccx()))); DatumBlock::new(bcx, scratch.to_expr_datum()) }