Brian Koropoff daa215e8c5 Fix handling of unboxed closure type param substitutions
- When selecting an implicit trait impl for an unboxed closure, plumb
  through and use the substitutions from impl selection instead of
  using those from the current param environment in trans, which may
  be incorrect.
- When generating a function declaration for an unboxed closure, plumb
  through the substitutions from the param environment of the closure
  as above.  Also normalize the type to avoid generating duplicate
  declarations due to regions being inconsistently replaced with
  ReStatic elsewhere.
- Do not place the closure type in the self param space when
  translating the unboxed closure callee, etc.  It is not actually
  used, and doing so conflicts with the self substitution from
  default trait methods.

Closes #18661
Closes #18685
2014-11-06 18:17:57 -08:00

428 lines
14 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* Trait Resolution. See doc.rs.
*/
use middle::mem_categorization::Typer;
use middle::subst;
use middle::ty;
use middle::typeck::infer::InferCtxt;
use std::rc::Rc;
use std::slice::Items;
use syntax::ast;
use syntax::codemap::{Span, DUMMY_SP};
pub use self::fulfill::FulfillmentContext;
pub use self::select::SelectionContext;
pub use self::select::SelectionCache;
pub use self::select::{MethodMatchResult, MethodMatched, MethodAmbiguous, MethodDidNotMatch};
pub use self::select::{MethodMatchedData}; // intentionally don't export variants
pub use self::util::supertraits;
pub use self::util::transitive_bounds;
pub use self::util::Supertraits;
pub use self::util::search_trait_and_supertraits_from_bound;
mod coherence;
mod fulfill;
mod select;
mod util;
/**
* An `Obligation` represents some trait reference (e.g. `int:Eq`) for
* which the vtable must be found. The process of finding a vtable is
* called "resolving" the `Obligation`. This process consists of
* either identifying an `impl` (e.g., `impl Eq for int`) that
* provides the required vtable, or else finding a bound that is in
* scope. The eventual result is usually a `Selection` (defined below).
*/
#[deriving(Clone)]
pub struct Obligation {
pub cause: ObligationCause,
pub recursion_depth: uint,
pub trait_ref: Rc<ty::TraitRef>,
}
/**
* Why did we incur this obligation? Used for error reporting.
*/
#[deriving(Clone)]
pub struct ObligationCause {
pub span: Span,
pub code: ObligationCauseCode
}
#[deriving(Clone)]
pub enum ObligationCauseCode {
/// Not well classified or should be obvious from span.
MiscObligation,
/// In an impl of trait X for type Y, type Y must
/// also implement all supertraits of X.
ItemObligation(ast::DefId),
/// Obligation incurred due to an object cast.
ObjectCastObligation(/* Object type */ ty::t),
/// To implement drop, type must be sendable.
DropTrait,
/// Various cases where expressions must be sized/copy/etc:
AssignmentLhsSized, // L = X implies that L is Sized
StructInitializerSized, // S { ... } must be Sized
VariableType(ast::NodeId), // Type of each variable must be Sized
ReturnType, // Return type must be Sized
RepeatVec, // [T,..n] --> T must be Copy
// Captures of variable the given id by a closure (span is the
// span of the closure)
ClosureCapture(ast::NodeId, Span),
// Types of fields (other than the last) in a struct must be sized.
FieldSized,
}
// An error has already been reported to the user, so no need to continue checking.
#[deriving(Clone,Show)]
pub struct ErrorReported;
pub type Obligations = subst::VecPerParamSpace<Obligation>;
pub type Selection = Vtable<Obligation>;
#[deriving(Clone,Show)]
pub enum SelectionError {
Unimplemented,
Overflow,
OutputTypeParameterMismatch(Rc<ty::TraitRef>, ty::type_err)
}
pub struct FulfillmentError {
pub obligation: Obligation,
pub code: FulfillmentErrorCode
}
#[deriving(Clone)]
pub enum FulfillmentErrorCode {
CodeSelectionError(SelectionError),
CodeAmbiguity,
}
/**
* When performing resolution, it is typically the case that there
* can be one of three outcomes:
*
* - `Ok(Some(r))`: success occurred with result `r`
* - `Ok(None)`: could not definitely determine anything, usually due
* to inconclusive type inference.
* - `Err(e)`: error `e` occurred
*/
pub type SelectionResult<T> = Result<Option<T>, SelectionError>;
/**
* Given the successful resolution of an obligation, the `Vtable`
* indicates where the vtable comes from. Note that while we call this
* a "vtable", it does not necessarily indicate dynamic dispatch at
* runtime. `Vtable` instances just tell the compiler where to find
* methods, but in generic code those methods are typically statically
* dispatched -- only when an object is constructed is a `Vtable`
* instance reified into an actual vtable.
*
* For example, the vtable may be tied to a specific impl (case A),
* or it may be relative to some bound that is in scope (case B).
*
*
* ```
* impl<T:Clone> Clone<T> for Option<T> { ... } // Impl_1
* impl<T:Clone> Clone<T> for Box<T> { ... } // Impl_2
* impl Clone for int { ... } // Impl_3
*
* fn foo<T:Clone>(concrete: Option<Box<int>>,
* param: T,
* mixed: Option<T>) {
*
* // Case A: Vtable points at a specific impl. Only possible when
* // type is concretely known. If the impl itself has bounded
* // type parameters, Vtable will carry resolutions for those as well:
* concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])])
*
* // Case B: Vtable must be provided by caller. This applies when
* // type is a type parameter.
* param.clone(); // VtableParam(Oblig_1)
*
* // Case C: A mix of cases A and B.
* mixed.clone(); // Vtable(Impl_1, [VtableParam(Oblig_1)])
* }
* ```
*
* ### The type parameter `N`
*
* See explanation on `VtableImplData`.
*/
#[deriving(Show,Clone)]
pub enum Vtable<N> {
/// Vtable identifying a particular impl.
VtableImpl(VtableImplData<N>),
/// Vtable automatically generated for an unboxed closure. The def
/// ID is the ID of the closure expression. This is a `VtableImpl`
/// in spirit, but the impl is generated by the compiler and does
/// not appear in the source.
VtableUnboxedClosure(ast::DefId, subst::Substs),
/// Successful resolution to an obligation provided by the caller
/// for some type parameter.
VtableParam(VtableParamData),
/// Successful resolution for a builtin trait.
VtableBuiltin(VtableBuiltinData<N>),
}
/**
* Identifies a particular impl in the source, along with a set of
* substitutions from the impl's type/lifetime parameters. The
* `nested` vector corresponds to the nested obligations attached to
* the impl's type parameters.
*
* The type parameter `N` indicates the type used for "nested
* obligations" that are required by the impl. During type check, this
* is `Obligation`, as one might expect. During trans, however, this
* is `()`, because trans only requires a shallow resolution of an
* impl, and nested obligations are satisfied later.
*/
#[deriving(Clone)]
pub struct VtableImplData<N> {
pub impl_def_id: ast::DefId,
pub substs: subst::Substs,
pub nested: subst::VecPerParamSpace<N>
}
#[deriving(Show,Clone)]
pub struct VtableBuiltinData<N> {
pub nested: subst::VecPerParamSpace<N>
}
/**
* A vtable provided as a parameter by the caller. For example, in a
* function like `fn foo<T:Eq>(...)`, if the `eq()` method is invoked
* on an instance of `T`, the vtable would be of type `VtableParam`.
*/
#[deriving(PartialEq,Eq,Clone)]
pub struct VtableParamData {
// In the above example, this would `Eq`
pub bound: Rc<ty::TraitRef>,
}
pub fn select_inherent_impl<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>,
param_env: &ty::ParameterEnvironment,
typer: &Typer<'tcx>,
cause: ObligationCause,
impl_def_id: ast::DefId,
self_ty: ty::t)
-> SelectionResult<VtableImplData<Obligation>>
{
/*!
* Matches the self type of the inherent impl `impl_def_id`
* against `self_ty` and returns the resulting resolution. This
* routine may modify the surrounding type context (for example,
* it may unify variables).
*/
// This routine is only suitable for inherent impls. This is
// because it does not attempt to unify the output type parameters
// from the trait ref against the values from the obligation.
// (These things do not apply to inherent impls, for which there
// is no trait ref nor obligation.)
//
// Matching against non-inherent impls should be done with
// `try_resolve_obligation()`.
assert!(ty::impl_trait_ref(infcx.tcx, impl_def_id).is_none());
let mut selcx = select::SelectionContext::new(infcx, param_env, typer);
selcx.select_inherent_impl(impl_def_id, cause, self_ty)
}
pub fn is_orphan_impl(tcx: &ty::ctxt,
impl_def_id: ast::DefId)
-> bool
{
/*!
* True if neither the trait nor self type is local. Note that
* `impl_def_id` must refer to an impl of a trait, not an inherent
* impl.
*/
!coherence::impl_is_local(tcx, impl_def_id)
}
pub fn overlapping_impls(infcx: &InferCtxt,
impl1_def_id: ast::DefId,
impl2_def_id: ast::DefId)
-> bool
{
/*!
* True if there exist types that satisfy both of the two given impls.
*/
coherence::impl_can_satisfy(infcx, impl1_def_id, impl2_def_id) &&
coherence::impl_can_satisfy(infcx, impl2_def_id, impl1_def_id)
}
pub fn obligations_for_generics(tcx: &ty::ctxt,
cause: ObligationCause,
generics: &ty::Generics,
substs: &subst::Substs)
-> subst::VecPerParamSpace<Obligation>
{
/*!
* Given generics for an impl like:
*
* impl<A:Foo, B:Bar+Qux> ...
*
* and a substs vector like `<A=A0, B=B0>`, yields a result like
*
* [[Foo for A0, Bar for B0, Qux for B0], [], []]
*/
util::obligations_for_generics(tcx, cause, 0, generics, substs)
}
pub fn obligation_for_builtin_bound(tcx: &ty::ctxt,
cause: ObligationCause,
source_ty: ty::t,
builtin_bound: ty::BuiltinBound)
-> Result<Obligation, ErrorReported>
{
util::obligation_for_builtin_bound(tcx, cause, builtin_bound, 0, source_ty)
}
impl Obligation {
pub fn new(cause: ObligationCause, trait_ref: Rc<ty::TraitRef>) -> Obligation {
Obligation { cause: cause,
recursion_depth: 0,
trait_ref: trait_ref }
}
pub fn misc(span: Span, trait_ref: Rc<ty::TraitRef>) -> Obligation {
Obligation::new(ObligationCause::misc(span), trait_ref)
}
pub fn self_ty(&self) -> ty::t {
self.trait_ref.self_ty()
}
}
impl ObligationCause {
pub fn new(span: Span, code: ObligationCauseCode) -> ObligationCause {
ObligationCause { span: span, code: code }
}
pub fn misc(span: Span) -> ObligationCause {
ObligationCause { span: span, code: MiscObligation }
}
pub fn dummy() -> ObligationCause {
ObligationCause { span: DUMMY_SP, code: MiscObligation }
}
}
impl<N> Vtable<N> {
pub fn iter_nested(&self) -> Items<N> {
match *self {
VtableImpl(ref i) => i.iter_nested(),
VtableUnboxedClosure(..) => (&[]).iter(),
VtableParam(_) => (&[]).iter(),
VtableBuiltin(ref i) => i.iter_nested(),
}
}
pub fn map_nested<M>(&self, op: |&N| -> M) -> Vtable<M> {
match *self {
VtableImpl(ref i) => VtableImpl(i.map_nested(op)),
VtableUnboxedClosure(d, ref s) => VtableUnboxedClosure(d, s.clone()),
VtableParam(ref p) => VtableParam((*p).clone()),
VtableBuiltin(ref i) => VtableBuiltin(i.map_nested(op)),
}
}
pub fn map_move_nested<M>(self, op: |N| -> M) -> Vtable<M> {
match self {
VtableImpl(i) => VtableImpl(i.map_move_nested(op)),
VtableUnboxedClosure(d, s) => VtableUnboxedClosure(d, s),
VtableParam(p) => VtableParam(p),
VtableBuiltin(i) => VtableBuiltin(i.map_move_nested(op)),
}
}
}
impl<N> VtableImplData<N> {
pub fn iter_nested(&self) -> Items<N> {
self.nested.iter()
}
pub fn map_nested<M>(&self,
op: |&N| -> M)
-> VtableImplData<M>
{
VtableImplData {
impl_def_id: self.impl_def_id,
substs: self.substs.clone(),
nested: self.nested.map(op)
}
}
pub fn map_move_nested<M>(self, op: |N| -> M) -> VtableImplData<M> {
let VtableImplData { impl_def_id, substs, nested } = self;
VtableImplData {
impl_def_id: impl_def_id,
substs: substs,
nested: nested.map_move(op)
}
}
}
impl<N> VtableBuiltinData<N> {
pub fn iter_nested(&self) -> Items<N> {
self.nested.iter()
}
pub fn map_nested<M>(&self,
op: |&N| -> M)
-> VtableBuiltinData<M>
{
VtableBuiltinData {
nested: self.nested.map(op)
}
}
pub fn map_move_nested<M>(self, op: |N| -> M) -> VtableBuiltinData<M> {
VtableBuiltinData {
nested: self.nested.map_move(op)
}
}
}
impl FulfillmentError {
fn new(obligation: Obligation, code: FulfillmentErrorCode)
-> FulfillmentError
{
FulfillmentError { obligation: obligation, code: code }
}
pub fn is_overflow(&self) -> bool {
match self.code {
CodeAmbiguity => false,
CodeSelectionError(Overflow) => true,
CodeSelectionError(_) => false,
}
}
}