rust/src/librustc/middle/traits/mod.rs

428 lines
14 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* Trait Resolution. See doc.rs.
*/
use middle::mem_categorization::Typer;
use middle::subst;
use middle::ty;
use middle::typeck::infer::InferCtxt;
use std::rc::Rc;
use std::slice::Items;
use syntax::ast;
use syntax::codemap::{Span, DUMMY_SP};
pub use self::fulfill::FulfillmentContext;
pub use self::select::SelectionContext;
pub use self::select::SelectionCache;
pub use self::select::{MethodMatchResult, MethodMatched, MethodAmbiguous, MethodDidNotMatch};
pub use self::select::{MethodMatchedData}; // intentionally don't export variants
pub use self::util::supertraits;
pub use self::util::transitive_bounds;
pub use self::util::Supertraits;
pub use self::util::search_trait_and_supertraits_from_bound;
mod coherence;
mod fulfill;
mod select;
mod util;
/**
* An `Obligation` represents some trait reference (e.g. `int:Eq`) for
* which the vtable must be found. The process of finding a vtable is
* called "resolving" the `Obligation`. This process consists of
* either identifying an `impl` (e.g., `impl Eq for int`) that
* provides the required vtable, or else finding a bound that is in
* scope. The eventual result is usually a `Selection` (defined below).
*/
#[deriving(Clone)]
pub struct Obligation {
pub cause: ObligationCause,
pub recursion_depth: uint,
pub trait_ref: Rc<ty::TraitRef>,
}
/**
* Why did we incur this obligation? Used for error reporting.
*/
#[deriving(Clone)]
pub struct ObligationCause {
pub span: Span,
pub code: ObligationCauseCode
}
#[deriving(Clone)]
pub enum ObligationCauseCode {
/// Not well classified or should be obvious from span.
MiscObligation,
/// In an impl of trait X for type Y, type Y must
/// also implement all supertraits of X.
ItemObligation(ast::DefId),
/// Obligation incurred due to an object cast.
ObjectCastObligation(/* Object type */ ty::t),
/// To implement drop, type must be sendable.
DropTrait,
/// Various cases where expressions must be sized/copy/etc:
AssignmentLhsSized, // L = X implies that L is Sized
StructInitializerSized, // S { ... } must be Sized
VariableType(ast::NodeId), // Type of each variable must be Sized
ReturnType, // Return type must be Sized
RepeatVec, // [T,..n] --> T must be Copy
// Captures of variable the given id by a closure (span is the
// span of the closure)
ClosureCapture(ast::NodeId, Span),
// Types of fields (other than the last) in a struct must be sized.
FieldSized,
}
// An error has already been reported to the user, so no need to continue checking.
#[deriving(Clone,Show)]
pub struct ErrorReported;
pub type Obligations = subst::VecPerParamSpace<Obligation>;
pub type Selection = Vtable<Obligation>;
#[deriving(Clone,Show)]
pub enum SelectionError {
Unimplemented,
Overflow,
OutputTypeParameterMismatch(Rc<ty::TraitRef>, ty::type_err)
}
pub struct FulfillmentError {
pub obligation: Obligation,
pub code: FulfillmentErrorCode
}
#[deriving(Clone)]
pub enum FulfillmentErrorCode {
CodeSelectionError(SelectionError),
CodeAmbiguity,
}
/**
* When performing resolution, it is typically the case that there
* can be one of three outcomes:
*
* - `Ok(Some(r))`: success occurred with result `r`
* - `Ok(None)`: could not definitely determine anything, usually due
* to inconclusive type inference.
* - `Err(e)`: error `e` occurred
*/
pub type SelectionResult<T> = Result<Option<T>, SelectionError>;
/**
* Given the successful resolution of an obligation, the `Vtable`
* indicates where the vtable comes from. Note that while we call this
* a "vtable", it does not necessarily indicate dynamic dispatch at
* runtime. `Vtable` instances just tell the compiler where to find
* methods, but in generic code those methods are typically statically
* dispatched -- only when an object is constructed is a `Vtable`
* instance reified into an actual vtable.
*
* For example, the vtable may be tied to a specific impl (case A),
* or it may be relative to some bound that is in scope (case B).
*
*
* ```
* impl<T:Clone> Clone<T> for Option<T> { ... } // Impl_1
* impl<T:Clone> Clone<T> for Box<T> { ... } // Impl_2
* impl Clone for int { ... } // Impl_3
*
* fn foo<T:Clone>(concrete: Option<Box<int>>,
* param: T,
* mixed: Option<T>) {
*
* // Case A: Vtable points at a specific impl. Only possible when
* // type is concretely known. If the impl itself has bounded
* // type parameters, Vtable will carry resolutions for those as well:
* concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])])
*
* // Case B: Vtable must be provided by caller. This applies when
* // type is a type parameter.
* param.clone(); // VtableParam(Oblig_1)
*
* // Case C: A mix of cases A and B.
* mixed.clone(); // Vtable(Impl_1, [VtableParam(Oblig_1)])
* }
* ```
*
* ### The type parameter `N`
*
* See explanation on `VtableImplData`.
*/
#[deriving(Show,Clone)]
pub enum Vtable<N> {
/// Vtable identifying a particular impl.
VtableImpl(VtableImplData<N>),
/// Vtable automatically generated for an unboxed closure. The def
/// ID is the ID of the closure expression. This is a `VtableImpl`
/// in spirit, but the impl is generated by the compiler and does
/// not appear in the source.
VtableUnboxedClosure(ast::DefId, subst::Substs),
/// Successful resolution to an obligation provided by the caller
/// for some type parameter.
VtableParam(VtableParamData),
/// Successful resolution for a builtin trait.
VtableBuiltin(VtableBuiltinData<N>),
}
/**
* Identifies a particular impl in the source, along with a set of
* substitutions from the impl's type/lifetime parameters. The
* `nested` vector corresponds to the nested obligations attached to
* the impl's type parameters.
*
* The type parameter `N` indicates the type used for "nested
* obligations" that are required by the impl. During type check, this
* is `Obligation`, as one might expect. During trans, however, this
* is `()`, because trans only requires a shallow resolution of an
* impl, and nested obligations are satisfied later.
*/
#[deriving(Clone)]
pub struct VtableImplData<N> {
pub impl_def_id: ast::DefId,
pub substs: subst::Substs,
pub nested: subst::VecPerParamSpace<N>
}
#[deriving(Show,Clone)]
pub struct VtableBuiltinData<N> {
pub nested: subst::VecPerParamSpace<N>
}
/**
* A vtable provided as a parameter by the caller. For example, in a
* function like `fn foo<T:Eq>(...)`, if the `eq()` method is invoked
* on an instance of `T`, the vtable would be of type `VtableParam`.
*/
#[deriving(PartialEq,Eq,Clone)]
pub struct VtableParamData {
// In the above example, this would `Eq`
pub bound: Rc<ty::TraitRef>,
}
pub fn select_inherent_impl<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>,
param_env: &ty::ParameterEnvironment,
typer: &Typer<'tcx>,
cause: ObligationCause,
impl_def_id: ast::DefId,
self_ty: ty::t)
-> SelectionResult<VtableImplData<Obligation>>
{
/*!
* Matches the self type of the inherent impl `impl_def_id`
* against `self_ty` and returns the resulting resolution. This
* routine may modify the surrounding type context (for example,
* it may unify variables).
*/
// This routine is only suitable for inherent impls. This is
// because it does not attempt to unify the output type parameters
// from the trait ref against the values from the obligation.
// (These things do not apply to inherent impls, for which there
// is no trait ref nor obligation.)
//
// Matching against non-inherent impls should be done with
// `try_resolve_obligation()`.
assert!(ty::impl_trait_ref(infcx.tcx, impl_def_id).is_none());
let mut selcx = select::SelectionContext::new(infcx, param_env, typer);
selcx.select_inherent_impl(impl_def_id, cause, self_ty)
}
pub fn is_orphan_impl(tcx: &ty::ctxt,
impl_def_id: ast::DefId)
-> bool
{
/*!
* True if neither the trait nor self type is local. Note that
* `impl_def_id` must refer to an impl of a trait, not an inherent
* impl.
*/
!coherence::impl_is_local(tcx, impl_def_id)
}
pub fn overlapping_impls(infcx: &InferCtxt,
impl1_def_id: ast::DefId,
impl2_def_id: ast::DefId)
-> bool
{
/*!
* True if there exist types that satisfy both of the two given impls.
*/
coherence::impl_can_satisfy(infcx, impl1_def_id, impl2_def_id) &&
coherence::impl_can_satisfy(infcx, impl2_def_id, impl1_def_id)
}
pub fn obligations_for_generics(tcx: &ty::ctxt,
cause: ObligationCause,
generics: &ty::Generics,
substs: &subst::Substs)
-> subst::VecPerParamSpace<Obligation>
{
/*!
* Given generics for an impl like:
*
* impl<A:Foo, B:Bar+Qux> ...
*
* and a substs vector like `<A=A0, B=B0>`, yields a result like
*
* [[Foo for A0, Bar for B0, Qux for B0], [], []]
*/
util::obligations_for_generics(tcx, cause, 0, generics, substs)
}
pub fn obligation_for_builtin_bound(tcx: &ty::ctxt,
cause: ObligationCause,
source_ty: ty::t,
builtin_bound: ty::BuiltinBound)
-> Result<Obligation, ErrorReported>
{
util::obligation_for_builtin_bound(tcx, cause, builtin_bound, 0, source_ty)
}
impl Obligation {
pub fn new(cause: ObligationCause, trait_ref: Rc<ty::TraitRef>) -> Obligation {
Obligation { cause: cause,
recursion_depth: 0,
trait_ref: trait_ref }
}
pub fn misc(span: Span, trait_ref: Rc<ty::TraitRef>) -> Obligation {
Obligation::new(ObligationCause::misc(span), trait_ref)
}
pub fn self_ty(&self) -> ty::t {
self.trait_ref.self_ty()
}
}
impl ObligationCause {
pub fn new(span: Span, code: ObligationCauseCode) -> ObligationCause {
ObligationCause { span: span, code: code }
}
pub fn misc(span: Span) -> ObligationCause {
ObligationCause { span: span, code: MiscObligation }
}
pub fn dummy() -> ObligationCause {
ObligationCause { span: DUMMY_SP, code: MiscObligation }
}
}
impl<N> Vtable<N> {
pub fn iter_nested(&self) -> Items<N> {
match *self {
VtableImpl(ref i) => i.iter_nested(),
VtableUnboxedClosure(..) => (&[]).iter(),
VtableParam(_) => (&[]).iter(),
VtableBuiltin(ref i) => i.iter_nested(),
}
}
pub fn map_nested<M>(&self, op: |&N| -> M) -> Vtable<M> {
match *self {
VtableImpl(ref i) => VtableImpl(i.map_nested(op)),
VtableUnboxedClosure(d, ref s) => VtableUnboxedClosure(d, s.clone()),
VtableParam(ref p) => VtableParam((*p).clone()),
VtableBuiltin(ref i) => VtableBuiltin(i.map_nested(op)),
}
}
pub fn map_move_nested<M>(self, op: |N| -> M) -> Vtable<M> {
match self {
VtableImpl(i) => VtableImpl(i.map_move_nested(op)),
VtableUnboxedClosure(d, s) => VtableUnboxedClosure(d, s),
VtableParam(p) => VtableParam(p),
VtableBuiltin(i) => VtableBuiltin(i.map_move_nested(op)),
}
}
}
impl<N> VtableImplData<N> {
pub fn iter_nested(&self) -> Items<N> {
self.nested.iter()
}
pub fn map_nested<M>(&self,
op: |&N| -> M)
-> VtableImplData<M>
{
VtableImplData {
impl_def_id: self.impl_def_id,
substs: self.substs.clone(),
nested: self.nested.map(op)
}
}
pub fn map_move_nested<M>(self, op: |N| -> M) -> VtableImplData<M> {
let VtableImplData { impl_def_id, substs, nested } = self;
VtableImplData {
impl_def_id: impl_def_id,
substs: substs,
nested: nested.map_move(op)
}
}
}
impl<N> VtableBuiltinData<N> {
pub fn iter_nested(&self) -> Items<N> {
self.nested.iter()
}
pub fn map_nested<M>(&self,
op: |&N| -> M)
-> VtableBuiltinData<M>
{
VtableBuiltinData {
nested: self.nested.map(op)
}
}
pub fn map_move_nested<M>(self, op: |N| -> M) -> VtableBuiltinData<M> {
VtableBuiltinData {
nested: self.nested.map_move(op)
}
}
}
impl FulfillmentError {
fn new(obligation: Obligation, code: FulfillmentErrorCode)
-> FulfillmentError
{
FulfillmentError { obligation: obligation, code: code }
}
pub fn is_overflow(&self) -> bool {
match self.code {
CodeAmbiguity => false,
CodeSelectionError(Overflow) => true,
CodeSelectionError(_) => false,
}
}
}