Remove `TypeAndMut` from `ty::RawPtr` variant, make it take `Ty` and `Mutability`
Pretty much mechanically converting `ty::RawPtr(ty::TypeAndMut { ty, mutbl })` to `ty::RawPtr(ty, mutbl)` and its fallout.
r? lcnr
cc rust-lang/types-team#124
"Handle" calls to upstream monomorphizations in compiler_builtins
This is pretty cooked, but I think it works.
compiler-builtins has a long-standing problem that at link time, its rlib cannot contain any calls to `core`. And yet, in codegen we _love_ inserting calls to symbols in `core`, generally from various panic entrypoints.
I intend this PR to attack that problem as completely as possible. When we generate a function call, we now check if we are generating a function call from `compiler_builtins` and whether the callee is a function which was not lowered in the current crate, meaning we will have to link to it.
If those conditions are met, actually generating the call is asking for a linker error. So we don't. If the callee diverges, we lower to an abort with the same behavior as `core::intrinsics::abort`. If the callee does not diverge, we produce an error. This means that compiler-builtins can contain panics, but they'll SIGILL instead of panicking. I made non-diverging calls a compile error because I'm guessing that they'd mostly get into compiler-builtins by someone making a mistake while working on the crate, and compile errors are better than linker errors. We could turn such calls into aborts as well if that's preferred.
This skips emitting extra arguments at every callsite (of which there
can be many). For a librustc_driver build with overflow checks enabled,
this cuts 0.7MB from the resulting binary.
* Move the done hash set from ConstantCx to define_all_allocs.
* Move check if alloc has already been defined to the start of the loop.
* Extract helper function for vtables.
add test ensuring simd codegen checks don't run when a static assertion failed
stdarch relies on this to ensure that SIMD indices are in bounds.
I would love to know why this works, but I can't figure out where codegen decides to not codegen a function if a required-const does not evaluate. `@oli-obk` `@bjorn3` do you have any idea?
Expose the Freeze trait again (unstably) and forbid implementing it manually
non-emoji version of https://github.com/rust-lang/rust/pull/121501
cc #60715
This trait is useful for generic constants (associated consts of generic traits). See the test (`tests/ui/associated-consts/freeze.rs`) added in this PR for a usage example. The builtin `Freeze` trait is the only way to do it, users cannot work around this issue.
It's also a useful trait for building some very specific abstrations, as shown by the usage by the `zerocopy` crate: https://github.com/google/zerocopy/issues/941
cc ```@RalfJung```
T-lang signed off on reexposing this unstably: https://github.com/rust-lang/rust/pull/121501#issuecomment-1969827742
Distinguish between library and lang UB in assert_unsafe_precondition
As described in https://github.com/rust-lang/rust/pull/121583#issuecomment-1963168186, `assert_unsafe_precondition` now explicitly distinguishes between language UB (conditions we explicitly optimize on) and library UB (things we document you shouldn't do, and maybe some library internals assume you don't do).
`debug_assert_nounwind` was originally added to avoid the "only at runtime" aspect of `assert_unsafe_precondition`. Since then the difference between the macros has gotten muddied. This totally revamps the situation.
Now _all_ preconditions shall be checked with `assert_unsafe_precondition`. If you have a precondition that's only checkable at runtime, do a `const_eval_select` hack, as done in this PR.
r? RalfJung