These debug assertions are all implemented only at runtime using
`const_eval_select`, and in the error path they execute
`intrinsics::abort` instead of being a normal debug assertion to
minimize the impact of these assertions on code size, when enabled.
Of all these changes, the bounds checks for unchecked indexing are
expected to be most impactful (case in point, they found a problem in
rustc).
Constify `Index{,Mut}` for `[T]`, `str`, and `[T; N]`
Several panic functions were rewired (via `const_eval_select`) to simpler implementations that do not require formatting for compile-time usage.
r? ```@oli-obk```
core: Implement ASCII trim functions on byte slices
Hi ````````@rust-lang/libs!```````` This is a feature that I wished for when implementing serial protocols with microcontrollers. Often these protocols may contain leading or trailing whitespace, which needs to be removed. Because oftentimes drivers will operate on the byte level, decoding to unicode and checking for unicode whitespace is unnecessary overhead.
This PR adds three new methods to byte slices:
- `trim_ascii_start`
- `trim_ascii_end`
- `trim_ascii`
I did not find any pre-existing discussions about this, which surprises me a bit. Maybe I'm missing something, and this functionality is already possible through other means? There's https://github.com/rust-lang/rfcs/issues/2547 ("Trim methods on slices"), but that has a different purpose.
As per the [std dev guide](https://std-dev-guide.rust-lang.org/feature-lifecycle/new-unstable-features.html), this is a proposed implementation without any issue / RFC. If this is the wrong process, please let me know. However, I thought discussing code is easier than discussing a mere idea, and hacking on the stdlib was fun.
Tracking issue: https://github.com/rust-lang/rust/issues/94035
This updates the standard library's documentation to use the new syntax. The
documentation is worthwhile to update as it should be more idiomatic
(particularly for features like this, which are nice for users to get acquainted
with). The general codebase is likely more hassle than benefit to update: it'll
hurt git blame, and generally updates can be done by folks updating the code if
(and when) that makes things more readable with the new format.
A few places in the compiler and library code are updated (mostly just due to
already having been done when this commit was first authored).
Carefully remove bounds checks from some chunk iterator functions
So, I was writing code that requires the equivalent of `rchunks(N).rev()` (which isn't the same as forward `chunks(N)` — in particular, if the buffer length is not a multiple of `N`, I must handle the "remainder" first).
I happened to look at the codegen output of the function (I was actually interested in whether or not a nested loop was being unrolled — it was), and noticed that in the outer `rchunks(n).rev()` loop, LLVM seemed to be unable to remove the bounds checks from the iteration: https://rust.godbolt.org/z/Tnz4MYY8f (this panic was from the split_at in `RChunks::next_back`).
After doing some experimentation, it seems all of the `next_back` in the non-exact chunk iterators have the issue: (`Chunks::next_back`, `RChunks::next_back`, `ChunksMut::next_back`, and `RChunksMut::next_back`)...
Even worse, the forward `rchunks` iterators sometimes have the issue as well (... but only sometimes). For example https://rust.godbolt.org/z/oGhbqv53r has bounds checks, but if I uncomment the loop body, it manages to remove the check (which is bizarre, since I'd expect the opposite...). I suspect it's highly dependent on the surrounding code, so I decided to remove the bounds checks from them anyway. Overall, this change includes:
- All `next_back` functions on the non-`Exact` iterators (e.g. `R?Chunks(Mut)?`).
- All `next` functions on the non-exact rchunks iterators (e.g. `RChunks(Mut)?`).
I wasn't able to catch any of the other chunk iterators failing to remove the bounds checks (I checked iterations over `r?chunks(_exact)?(_mut)?` with constant chunk sizes under `-O3`, `-Os`, and `-Oz`), which makes sense, since these were the cases where it was harder to prove the bounds check correct to remove...
In fact, it took quite a bit of thinking to convince myself that using unchecked_ here was valid — so I'm not really surprised that LLVM had trouble (although compilers are slightly better at this sort of reasoning than humans). A consequence of that is the fact that the `// SAFETY` comment for these are... kinda long...
---
I didn't do this for, or even think about it for, any of the other iteration methods; just `next` and `next_back` (where it mattered). If this PR is accepted, I'll file a follow up for someone (possibly me) to look at the others later (in particular, `nth`/`nth_back` looked like they had similar logic), but I wanted to do this now, as IMO `next`/`next_back` are the most important here, since they're what gets used by the iteration protocol.
---
Note: While I don't expect this to impact performance directly, the panic is a side effect, which would otherwise not exist in these loops. That is, this could prevent the compiler from being able to move/remove/otherwise rework a loop over these iterators (as an example, it could not delete the code for a loop whose body computes a value which doesn't get used).
Also, some like to be able to have confidence this code has no panicking branches in the optimized code, and "no bounds checks" is kinda part of the selling point of Rust's iterators anyway.
Drop guards in slice sorting derive src pointers from &mut T, which is invalidated by interior mutation in comparison
I tried to run https://github.com/rust-lang/miri-test-libstd on `alloc` with `-Zmiri-track-raw-pointers`, and got a failure on the test `slice::panic_safe`. The test failure has nothing to do with panic safety, it's from how the test tests for panic safety.
I minimized the test failure into this very silly program:
```rust
use std::cell::Cell;
use std::cmp::Ordering;
#[derive(Clone)]
struct Evil(Cell<usize>);
fn main() {
let mut input = vec![Evil(Cell::new(0)); 3];
// Hits the bug pattern via CopyOnDrop in core
input.sort_unstable_by(|a, _b| {
a.0.set(0);
Ordering::Less
});
// Hits the bug pattern via InsertionHole in alloc
input.sort_by(|_a, b| {
b.0.set(0);
Ordering::Less
});
}
```
To fix this, I'm just removing the mutability/uniqueness where it wasn't required.
Track caller of slice split and swap
Improves error location for `slice.split_at*()` and `slice.swap()`.
These are generic inline functions, so the `#[track_caller]` on them is free — only changes a value of an argument already passed to panicking code.
The src pointers in CopyOnDrop and InsertionHole used to be *mut T, and
were derived via automatic conversion from &mut T. According to Stacked
Borrows 2.1, this means that those pointers become invalidated by
interior mutation in the comparison function.
But there's no need for mutability in this code path. Thus, we can
change the drop guards to use *const and derive those from &T.
Most of these problems originate in use of get_unchecked_mut.
When calling ptr::copy_nonoverlapping, using get_unchecked_mut for both
arguments causes the borrow created to make the second pointer to invalid the
first.
The pairs of identical MaybeUninit::slice_as_mut_ptr calls similarly
invalidate each other.
There was also a similar borrow invalidation problem with the use of
slice::get_unchecked_mut to derive the pointer for the CopyOnDrop.
Add `[T]::as_simd(_mut)`
SIMD-style optimizations are the most common use for `[T]::align_to(_mut)`, but that's `unsafe`. So these are *safe* wrappers around it, now that we have the `Simd` type available, to make it easier to use.
```rust
impl [T] {
pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T]);
pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T]);
}
```
They're `cfg`'d out for miri because the `simd` module as a whole is unavailable there.
Make split_inclusive() on an empty slice yield an empty output
`[].split_inclusive()` currently yields a single, empty slice. That's
different from `"".split_inslusive()`, which yields no output at
all. I think that makes the slice version harder to use.
The case where I ran into this bug was when writing code for
generating a diff between two slices of bytes. I wanted to prefix
removed lines with "-" and a added lines with "+". Due to
`split_inclusive()`'s current behavior, that means that my code prints
just a "-" or "+" for empty files. I suspect most existing callers
have similar "bugs" (which would be fixed by this patch).
Closes#89716.
Make certain panicky stdlib functions behave better under panic_immediate_abort
The stdlib has a `panic_immediate_abort` feature that turns panics into immediate aborts, without any formatting/display logic. This feature was [introduced](https://github.com/rust-lang/rust/pull/55011) primarily for codesize-constrained situations.
Unfortunately, this win doesn't quite propagate to `Result::expect()` and `Result::unwrap()`, while the formatting machinery is reduced, `expect()` and `unwrap()` both call `unwrap_failed("msg", &err)` which has a signature of `fn unwrap_failed(msg: &str, error: &dyn fmt::Debug)` and is `#[inline(never)]`. This means that `unwrap_failed` will unconditionally construct a `dyn Debug` trait object even though the object is never used in the function.
Constructing a trait object (even if you never call a method on it!) forces rust to include the vtable and any dependencies. This means that in `panic_immediate_abort` mode, calling expect/unwrap on a Result will pull in a whole bunch of formatting code for the error type even if it's completely unused.
This PR swaps out the function with one that won't require a trait object such that it won't force the inclusion of vtables in the code. It also gates off `#[inline(never)]` in a bunch of other places where allowing the inlining of an abort may be useful (this kind of thing is already done elsewhere in the stdlib).
I don't know how to write a test for this; we don't really seem to have any tests for `panic_immediate_abort` anyway so perhaps it's fine as is.
adjust const_eval_select documentation
"The Rust compiler assumes" indicates that this is language UB, but [I don't think that is a good idea](https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/topic/const_eval_select.20assumptions). This UB would be very hard to test for and looks like a way-too-big footgun. ``@oli-obk`` suggested this is meant to be more like "library UB", so I tried to adjust the docs accordingly.
I also removed all references to "referential transparency". That is a rather vague concept used to mean many different things, and I honestly have no idea what exactly is meant by it in this specific instance. But I assume ``@fee1-dead`` had in their mind a property that all `const fn` code upholds, so by demanding that the runtime code and the const-time code are *observably equivalent*, whatever that property is would also be enforced here.
Cc ``@rust-lang/wg-const-eval``
SIMD-style optimizations are the most common use for `[T]::align_to(_mut)`, but that's `unsafe`. So these are *safe* wrappers around it, now that we have the `Simd` type available, to make it easier to use.
```rust
impl [T] {
pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T]);
pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T]);
}
```
MIRI says `reverse` is UB, so replace it with something LLVM can vectorize
For small types with padding, the current implementation is UB because it does integer operations on uninit values.
```
error: Undefined Behavior: using uninitialized data, but this operation requires initialized memory
--> /playground/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/num/mod.rs:836:5
|
836 | / uint_impl! { u32, u32, i32, 32, 4294967295, 8, "0x10000b3", "0xb301", "0x12345678",
837 | | "0x78563412", "0x1e6a2c48", "[0x78, 0x56, 0x34, 0x12]", "[0x12, 0x34, 0x56, 0x78]", "", "" }
| |________________________________________________________________________________________________^ using uninitialized data, but this operation requires initialized memory
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
= note: inside `core::num::<impl u32>::rotate_left` at /playground/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/num/uint_macros.rs:211:13
= note: inside `core::slice::<impl [Foo]>::reverse` at /playground/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/slice/mod.rs:701:58
```
<https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=340739f22ca5b457e1da6f361768edc6>
But LLVM has gotten smarter since I wrote the previous implementation in 2017, so this PR removes all the manual magic and just writes it in such a way that LLVM will vectorize. This code is much simpler and has very little `unsafe`, and is actually faster to boot!
If you're curious to see the codegen: <https://rust.godbolt.org/z/Pcn13Y9E3>
Before:
```
running 7 tests
test slice::reverse_simd_f64x4 ... bench: 17,940 ns/iter (+/- 481) = 58448 MB/s
test slice::reverse_u128 ... bench: 17,758 ns/iter (+/- 205) = 59048 MB/s
test slice::reverse_u16 ... bench: 158,234 ns/iter (+/- 6,876) = 6626 MB/s
test slice::reverse_u32 ... bench: 62,047 ns/iter (+/- 1,117) = 16899 MB/s
test slice::reverse_u64 ... bench: 31,582 ns/iter (+/- 552) = 33201 MB/s
test slice::reverse_u8 ... bench: 81,253 ns/iter (+/- 1,510) = 12905 MB/s
test slice::reverse_u8x3 ... bench: 270,615 ns/iter (+/- 11,463) = 3874 MB/s
```
After:
```
running 7 tests
test slice::reverse_simd_f64x4 ... bench: 17,731 ns/iter (+/- 306) = 59137 MB/s
test slice::reverse_u128 ... bench: 17,919 ns/iter (+/- 239) = 58517 MB/s
test slice::reverse_u16 ... bench: 43,160 ns/iter (+/- 607) = 24295 MB/s
test slice::reverse_u32 ... bench: 21,065 ns/iter (+/- 371) = 49778 MB/s
test slice::reverse_u64 ... bench: 21,118 ns/iter (+/- 482) = 49653 MB/s
test slice::reverse_u8 ... bench: 76,878 ns/iter (+/- 1,688) = 13639 MB/s
test slice::reverse_u8x3 ... bench: 264,723 ns/iter (+/- 5,544) = 3961 MB/s
```
Those are the existing benches, <14a2fd640e/library/alloc/benches/slice.rs (L322-L346)>
For small types with padding, the current implementation is UB because it does integer operations on uninit values. But LLVM has gotten smarter since I wrote the previous implementation in 2017, so remove all the manual magic and just write it in such a way that LLVM will vectorize. This code is much simpler (albeit nuanced) and has very little `unsafe`, and is actually faster to boot!
Add #[must_use] to remaining core functions
I've run out of compelling reasons to group functions together across crates so I'm just going to go module-by-module. This is everything remaining from the `core` crate.
Ignored by clippy for reasons unknown:
```rust
core::alloc::Layout unsafe fn for_value_raw<T: ?Sized>(t: *const T) -> Self;
core::any const fn type_name_of_val<T: ?Sized>(_val: &T) -> &'static str;
```
Ignored by clippy because of `mut`:
```rust
str fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str);
```
<del>
Ignored by clippy presumably because a caller might want `f` called for side effects. That seems like a bad usage of `map` to me.
```rust
core::cell::Ref<'b, T> fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, T>;
core::cell::Ref<'b, T> fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>);
```
</del>
Parent issue: #89692
r? ```@joshtriplett```
Add #[must_use] to expensive computations
The unifying theme for this commit is weak, admittedly. I put together a list of "expensive" functions when I originally proposed this whole effort, but nobody's cared about that criterion. Still, it's a decent way to bite off a not-too-big chunk of work.
Given the grab bag nature of this commit, the messages I used vary quite a bit. I'm open to wording changes.
For some reason clippy flagged four `BTreeSet` methods but didn't say boo about equivalent ones on `HashSet`. I stared at them for a while but I can't figure out the difference so I added the `HashSet` ones in.
```rust
// Flagged by clippy.
alloc::collections::btree_set::BTreeSet<T> fn difference<'a>(&'a self, other: &'a BTreeSet<T>) -> Difference<'a, T>;
alloc::collections::btree_set::BTreeSet<T> fn symmetric_difference<'a>(&'a self, other: &'a BTreeSet<T>) -> SymmetricDifference<'a, T>
alloc::collections::btree_set::BTreeSet<T> fn intersection<'a>(&'a self, other: &'a BTreeSet<T>) -> Intersection<'a, T>;
alloc::collections::btree_set::BTreeSet<T> fn union<'a>(&'a self, other: &'a BTreeSet<T>) -> Union<'a, T>;
// Ignored by clippy, but not by me.
std::collections::HashSet<T, S> fn difference<'a>(&'a self, other: &'a HashSet<T, S>) -> Difference<'a, T, S>;
std::collections::HashSet<T, S> fn symmetric_difference<'a>(&'a self, other: &'a HashSet<T, S>) -> SymmetricDifference<'a, T, S>
std::collections::HashSet<T, S> fn intersection<'a>(&'a self, other: &'a HashSet<T, S>) -> Intersection<'a, T, S>;
std::collections::HashSet<T, S> fn union<'a>(&'a self, other: &'a HashSet<T, S>) -> Union<'a, T, S>;
```
Parent issue: #89692
r? ```@joshtriplett```
track_caller for slice length assertions
`clone_from_slice` was missing `#[track_caller]`, and its assert did not report a useful location.
These are small generic methods, so hopefully track_caller gets inlined into nothingness, but it may be worth running a benchmark on this.
Make RSplit<T, P>: Clone not require T: Clone
This addresses a TODO comment. The behavior of `#[derive(Clone)]` *does* result in a `T: Clone` requirement. Playground example:
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=a8b1a9581ff8893baf401d624a53d35b
Add a manual `Clone` implementation, mirroring `Split` and `SplitInclusive`.
`(R)?SplitN(Mut)?` don't have any `Clone` implementations, but I'll leave that for its own pull request.
This addresses a TODO comment. The behavior of #[derive(Clone)]
*does* result in a T: Clone requirement.
Add a manual Clone implementation, matching Split and SplitInclusive.
The unifying theme for this commit is weak, admittedly. I put together a
list of "expensive" functions when I originally proposed this whole
effort, but nobody's cared about that criterion. Still, it's a decent
way to bite off a not-too-big chunk of work.
Given the grab bag nature of this commit, the messages I used vary quite
a bit.
`[].split_inclusive()` currently yields a single, empty slice. That's
different from `"".split_inslusive()`, which yields no output at
all. I think that makes the slice version harder to use.
The case where I ran into this bug was when writing code for
generating a diff between two slices of bytes. I wanted to prefix
removed lines with "-" and a added lines with "+". Due to
`split_inclusive()`'s current behavior, that means that my code prints
just a "-" or "+" for empty files. I suspect most existing callers
have similar "bugs" (which would be fixed by this patch).
Closes#89716.
These methods could be misconstrued as modifying their arguments instead
of returning new values.
Where possible I made the note recommend a method that does mutate in
place.
Make `<[T]>::split_at_unchecked` and `<[T]>::split_at_mut_unchecked` public
The methods were originally added in https://github.com/rust-lang/rust/pull/75936 (30dc32b10e), but for some reason as private. Nevertheless, the methods have documentation and even a [tracking issue](https://github.com/rust-lang/rust/issues/76014).
It's very weird to have a tracking issue for private methods and these methods may be useful outside of the standard library. As such, this PR makes the methods public.
Remove ignore-tidy-undocumented-unsafe from core::slice::sort
Write down the missing safety arguments to be able to remove `ignore-tidy-undocumented-unsafe` from `core::slice::sort`.
Helps with #66219
``@rustbot`` label C-cleanup T-libs
Most of these are because alloc uses `#[lang_item]` to define methods,
but core documents primitives before those methods are available.
- Fix rustdoc-js-std test
For some reason this change made CStr not show up in the results for
`str,u8`. Since it still shows up for str, and since it wasn't a great
match for that query anyway, I think this is ok to let slide.
- Add test that all primitives can be linked to
- Enable `doc(primitive)` in `core` as well
- Add linkcheck exception specifically for Windows
Ideally this would be done automatically by the linkchecker by
replacing `\\` with forward slashes, but this PR is already a ton of
work ...
- Don't forcibly fail linkchecking if there's a broken intra-doc link on Windows
Previously, it would exit with a hard error if a missing file had `::`
in it. This changes it to report a missing file instead, which allows
adding an exception.
The libs-api team agrees to allow const_trait_impl to appear in the
standard library as long as stable code cannot be broken (they are
properly gated) this means if the compiler teams thinks it's okay, then
it's okay.
My priority on constifying would be:
1. Non-generic impls (e.g. Default) or generic impls with no
bounds
2. Generic functions with bounds (that use const impls)
3. Generic impls with bounds
4. Impls for traits with associated types
For people opening constification PRs: please cc me and/or oli-obk.
Adds extensive test for all the [r]split* iterators.
Fixes size_hint upper bound for split_inclusive* iterators which was one higher than necessary for non-empty slices.
Fixes size_hint lower bound for [r]splitn* iterators when n==0, which was one too high.
Partially stabilize `const_slice_first_last`
This stabilizes the non-`mut` methods of `const_slice_first_last` as `const`. These methods are trivial to implement and have no blockers that I am aware of.
`@rustbot` label +A-const-fn +S-waiting-on-review +T-libs-api
Implement advance_by, advance_back_by for slice::{Iter, IterMut}
Part of #77404.
Picking up where #77633 was closed.
I have addressed https://github.com/rust-lang/rust/pull/77633#issuecomment-771842599 by restoring `nth` and `nth_back`. So according to that comment this should already be r=m-ou-se, but it has been sitting for a while.
Add MIR pass to lower call to `core::slice::len` into `Len` operand
During some larger experiment with range analysis I've found that code like `let l = slice.len()` produces different MIR then one found in bound checks. This optimization pass replaces terminators that are calls to `core::slice::len` with just a MIR operand and Goto terminator.
It uses some heuristics to remove the outer borrow that is made to call `core::slice::len`, but I assume it can be eliminated, just didn't find how.
Would like to express my gratitude to `@oli-obk` who helped me a lot on Zullip
This method on the Iterator trait is doc(hidden), and about half of
implementations were doc(hidden). This adds the attribute to the
remaining implementations.
Integrate binary search codes of binary_search_by and partition_point
For now partition_point has own binary search code piece.
It is because binary_search_by had called the comparer more times and the author (=me) wanted to avoid it.
However, now binary_search_by uses the comparer minimum times. (#74024)
So it's time to integrate them.
The appearance of the codes are a bit different but both use completely same logic.
Implement indexing slices with pairs of core::ops::Bound<usize>
Closes#49976.
I am not sure about code duplication between `check_range` and `into_maybe_range`. Should be former implemented in terms of the latter? Also this PR doesn't address code duplication between `impl SliceIndex for Range*`.
Instruct LLVM that binary_search returns a valid index
This allows removing bound checks when the return value of `binary_search` is used to index into the slice it was call on. I also added a codegen test for this, not sure if it's the right thing to do (I didn't find anything on the dev guide), but it felt so.
Add function core::iter::zip
This makes it a little easier to `zip` iterators:
```rust
for (x, y) in zip(xs, ys) {}
// vs.
for (x, y) in xs.into_iter().zip(ys) {}
```
You can `zip(&mut xs, &ys)` for the conventional `iter_mut()` and
`iter()`, respectively. This can also support arbitrary nesting, where
it's easier to see the item layout than with arbitrary `zip` chains:
```rust
for ((x, y), z) in zip(zip(xs, ys), zs) {}
for (x, (y, z)) in zip(xs, zip(ys, zs)) {}
// vs.
for ((x, y), z) in xs.into_iter().zip(ys).zip(xz) {}
for (x, (y, z)) in xs.into_iter().zip((ys.into_iter().zip(xz)) {}
```
It may also format more nicely, especially when the first iterator is a
longer chain of methods -- for example:
```rust
iter::zip(
trait_ref.substs.types().skip(1),
impl_trait_ref.substs.types().skip(1),
)
// vs.
trait_ref
.substs
.types()
.skip(1)
.zip(impl_trait_ref.substs.types().skip(1))
```
This replaces the tuple-pair `IntoIterator` in #78204.
There is prior art for the utility of this in [`itertools::zip`].
[`itertools::zip`]: https://docs.rs/itertools/0.10.0/itertools/fn.zip.html
Generalize and inline slice::fill specializations
This makes the memset specialization applicable to more types. And since the code now lives in a generic method it is also eligible for cross-crate inlining which should fix#83235
Add `as_str` method for split whitespace str iterators
This PR adds `as_str` methods to `SplitWhitespace` and `SplitAsciiWhitespace`
str iterators. The methods return the remainder, similar to `as_str` methods on
`Chars` and other split iterators. This PR is a continuation of https://github.com/rust-lang/rust/pull/75265, which added `as_str` for all other str split iterators.
The feature gate for new methods is `#![feature(str_split_whitespace_as_str)]`.
`SplitWhitespace` and `SplitAsciiWhitespace` use iterators under the hood, so to implement `as_str` it's required to either
1. Make fields of some iterators `pub(crate)`
2. Add getter methods (like `into_inner`, `inner`, `inner_mut`...) to some (all) iterators
3. Completely rewrite `SplitWhitespace` and `SplitAsciiWhitespace`
This PR uses the 1. approach since it's easier to implement and requires fewer changes (and no changes to the public API). If you think that's not the right way, please, tell me.
r? `@m-ou-se`
Improve slice.binary_search_by()'s best-case performance to O(1)
This PR aimed to improve the [slice.binary_search_by()](https://doc.rust-lang.org/std/primitive.slice.html#method.binary_search_by)'s best-case performance to O(1).
# Noticed
I don't know why the docs of `binary_search_by` said `"If there are multiple matches, then any one of the matches could be returned."`, but the implementation isn't the same thing. Actually, it returns the **last one** if multiple matches found.
Then we got two options:
## If returns the last one is the correct or desired result
Then I can rectify the docs and revert my changes.
## If the docs are correct or desired result
Then my changes can be merged after fully reviewed.
However, if my PR gets merged, another issue raised: this could be a **breaking change** since if multiple matches found, the returning order no longer the last one instead of it could be any one.
For example:
```rust
let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 1;
let idx = s.binary_search(&num);
s.insert(idx, 2);
// Old implementations
assert_eq!(s, [0, 1, 1, 1, 1, 2, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
// New implementations
assert_eq!(s, [0, 1, 1, 1, 2, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
```
# Benchmarking
**Old implementations**
```sh
$ ./x.py bench --stage 1 library/libcore
test slice::binary_search_l1 ... bench: 59 ns/iter (+/- 4)
test slice::binary_search_l1_with_dups ... bench: 59 ns/iter (+/- 3)
test slice::binary_search_l2 ... bench: 76 ns/iter (+/- 5)
test slice::binary_search_l2_with_dups ... bench: 77 ns/iter (+/- 17)
test slice::binary_search_l3 ... bench: 183 ns/iter (+/- 23)
test slice::binary_search_l3_with_dups ... bench: 185 ns/iter (+/- 19)
```
**New implementations (1)**
Implemented by this PR.
```rust
if cmp == Equal {
return Ok(mid);
} else if cmp == Less {
base = mid
}
```
```sh
$ ./x.py bench --stage 1 library/libcore
test slice::binary_search_l1 ... bench: 58 ns/iter (+/- 2)
test slice::binary_search_l1_with_dups ... bench: 37 ns/iter (+/- 4)
test slice::binary_search_l2 ... bench: 76 ns/iter (+/- 3)
test slice::binary_search_l2_with_dups ... bench: 57 ns/iter (+/- 6)
test slice::binary_search_l3 ... bench: 200 ns/iter (+/- 30)
test slice::binary_search_l3_with_dups ... bench: 157 ns/iter (+/- 6)
$ ./x.py bench --stage 1 library/libcore
test slice::binary_search_l1 ... bench: 59 ns/iter (+/- 8)
test slice::binary_search_l1_with_dups ... bench: 37 ns/iter (+/- 2)
test slice::binary_search_l2 ... bench: 77 ns/iter (+/- 2)
test slice::binary_search_l2_with_dups ... bench: 57 ns/iter (+/- 2)
test slice::binary_search_l3 ... bench: 198 ns/iter (+/- 21)
test slice::binary_search_l3_with_dups ... bench: 158 ns/iter (+/- 11)
```
**New implementations (2)**
Suggested by `@nbdd0121` in [comment](https://github.com/rust-lang/rust/pull/74024#issuecomment-665430239).
```rust
base = if cmp == Greater { base } else { mid };
if cmp == Equal { break }
```
```sh
$ ./x.py bench --stage 1 library/libcore
test slice::binary_search_l1 ... bench: 59 ns/iter (+/- 7)
test slice::binary_search_l1_with_dups ... bench: 37 ns/iter (+/- 5)
test slice::binary_search_l2 ... bench: 75 ns/iter (+/- 3)
test slice::binary_search_l2_with_dups ... bench: 56 ns/iter (+/- 3)
test slice::binary_search_l3 ... bench: 195 ns/iter (+/- 15)
test slice::binary_search_l3_with_dups ... bench: 151 ns/iter (+/- 7)
$ ./x.py bench --stage 1 library/libcore
test slice::binary_search_l1 ... bench: 57 ns/iter (+/- 2)
test slice::binary_search_l1_with_dups ... bench: 38 ns/iter (+/- 2)
test slice::binary_search_l2 ... bench: 77 ns/iter (+/- 11)
test slice::binary_search_l2_with_dups ... bench: 57 ns/iter (+/- 4)
test slice::binary_search_l3 ... bench: 194 ns/iter (+/- 15)
test slice::binary_search_l3_with_dups ... bench: 151 ns/iter (+/- 18)
```
I run some benchmarking testings against on two implementations. The new implementation has a lot of improvement in duplicates cases, while in `binary_search_l3` case, it's a little bit slower than the old one.
Turn may_have_side_effect into an associated constant
The `may_have_side_effect` is an implementation detail of `TrustedRandomAccess`
trait. It describes if obtaining an iterator element may have side effects. It
is currently implemented as an associated function.
Turn `may_have_side_effect` into an associated constant. This makes the
value immediately available to the optimizer.
Convert primitives in the standard library to intra-doc links
Blocked on https://github.com/rust-lang/rust/pull/80181. I forgot that this needs to wait for the beta bump so the standard library can be documented with `doc --stage 0`.
Notably I didn't convert `core::slice` because it's like 50 links and I got scared 😨
Specialize slice::fill with Copy type and u8/i8/bool
I don't expect rustperf could measure any perf improvements with this changes
since `slice::fill` is newly added.
Godbolt link for this change: <https://rust.godbolt.org/z/r3fzee>.
r? `@matthewjasper` since this patch added new specialization.
This commit adds `as_str` methods to `SplitWhitespace` and `SplitAsciiWhitespace`
str iterators. The methods return the remainder, similar to `as_str` methods on
`Chars` and other split iterators.
This commit also makes fields of some iterators `pub(crate)`.
Improve design of `assert_len`
It was discussed in the [tracking issue](https://github.com/rust-lang/rust/issues/76393#issuecomment-761765448) that `assert_len`'s name and usage are confusing. This PR improves them based on a suggestion by ``@scottmcm`` in that issue.
I also improved the documentation to make it clearer when you might want to use this method.
Old example:
```rust
let range = range.assert_len(slice.len());
```
New example:
```rust
let range = range.ensure_subset_of(..slice.len());
```
Fixes#81157
The `may_have_side_effect` is an implementation detail of `TrustedRandomAccess`
trait. It describes if obtaining an iterator element may have side effects. It
is currently implemented as an associated function.
Turn `may_have_side_effect` into an associated constant. This makes the
value immediately available to the optimizer.
Stabilize `core::slice::fill_with`
_Tracking issue: https://github.com/rust-lang/rust/issues/79221_
This stabilizes the `slice_fill_with` feature for Rust 1.51, following the stabilization of `slice_fill` in 1.50. This was requested by libs team members in https://github.com/rust-lang/rust/pull/79213.
This PR also adds the "memset" alias for `slice::fill_with`, mirroring the alias set on the `slice::fill` sibling API. This will ensure someone looking for "memset" will find both variants.
r? `@Amanieu`
Rework diagnostics for wrong number of generic args (fixes#66228 and #71924)
This PR reworks the `wrong number of {} arguments` message, so that it provides more details and contextual hints.
Stabilize split_inclusive
### Contents of this MR
This stabilises:
* `slice::split_inclusive`
* `slice::split_inclusive_mut`
* `str::split_inclusive`
Closes#72360.
### A possible concern
The proliferation of `split_*` methods is not particularly pretty. The existence of `split_inclusive` seems to invite the addition of `rsplit_inclusive`, `splitn_inclusive`, etc. We could instead have a more general API, along these kinds of lines maybe:
```
pub fn split_generic('a,P,H>(&'a self, pat: P, how: H) -> ...
where P: Pattern
where H: SplitHow;
pub fn split_generic_mut('a,P,H>(&'a mut self, pat: P, how: H) -> ...
where P: Pattern
where H: SplitHow;
trait SplitHow {
fn reverse(&self) -> bool;
fn inclusive -> bool;
fn limit(&self) -> Option<usize>;
}
pub struct SplitFwd;
...
pub struct SplitRevInclN(pub usize);
```
But maybe that is worse.
### Let us defer that? ###
This seems like a can of worms. I think we can defer opening it now; if and when we have something more general, these two methods can become convenience aliases. But I thought I would mention it so the lang API team can consider it and have an opinion.
Stabilize slice::strip_prefix and slice::strip_suffix
These two methods are useful. The corresponding methods on `str` are already stable.
I believe that stablising these now would not get in the way of, in the future, extending these to take a richer pattern API a la `str`'s patterns.
Tracking PR: #73413. I also have an outstanding PR to improve the docs for these two functions and the corresponding ones on `str`: #75078
I have tried to follow the [instructions in the dev guide](https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#stabilization-pr). The part to do with `compiler/rustc_feature` did not seem applicable. I assume that's because these are just library features, so there is no corresponding machinery in rustc.
The return of the GroupBy and GroupByMut iterators on slice
According to https://github.com/rust-lang/rfcs/pull/2477#issuecomment-742034372, I am opening this PR again, this time I implemented it in safe Rust only, it is therefore much easier to read and is completely safe.
This PR proposes to add two new methods to the slice, the `group_by` and `group_by_mut`. These two methods provide a way to iterate over non-overlapping sub-slices of a base slice that are separated by the predicate given by the user (e.g. `Partial::eq`, `|a, b| a.abs() < b.abs()`).
```rust
let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
let mut iter = slice.group_by(|a, b| a == b);
assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
assert_eq!(iter.next(), Some(&[3, 3][..]));
assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
assert_eq!(iter.next(), None);
```
[An RFC](https://github.com/rust-lang/rfcs/pull/2477) was open 2 years ago but wasn't necessary.
We hope later to extend `core::str::Pattern` to slices too, perhaps as
part of stabilising that. We want to minimise the amount of type
inference breakage when we do that, so we don't want to stabilise
strip_prefix and strip_suffix taking a simple `&[T]`.
@KodrAus suggested the approach of introducing a new perma-unstable
trait, which reduces this future inference break risk.
I found it necessary to make two impls of this trait, as the unsize
coercion don't apply when hunting for trait implementations.
Since SlicePattern's only method returns a reference, and the whole
trait is just a wrapper for slices, I made the trait type be the
non-reference type [T] or [T;N] rather than the reference. Otherwise
the trait would have a lifetime parameter.
I marked both the no-op conversion functions `#[inline]`. I'm not
sure if that is necessary but it seemed at the very least harmless.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>