This commit adds the following impls:
impl<T> Deref<[T]> for Vec<T>
impl<T> DerefMut<[T]> for Vec<T>
impl Deref<str> for String
This commit also removes all duplicated inherent methods from vectors and
strings as implementations will now silently call through to the slice
implementation. Some breakage occurred at std and beneath due to inherent
methods removed in favor of those in the slice traits and std doesn't use its
own prelude,
cc #18424
This common representation for delimeters should make pattern matching easier. Having a separate `token::DelimToken` enum also allows us to enforce the invariant that the opening and closing delimiters must be the same in `ast::TtDelimited`, removing the need to ensure matched delimiters when working with token trees.
Simpler, safer and shorter, in the same spirit of the current version, and the
same performances.
@mahkoh please review, I think I didn't change any performances related thing.
This includes updating the language items and marking what needs to
change after a snapshot.
If you do not use the standard library, the language items you need to
implement have changed. For example:
```rust
#[lang = "fail_fmt"] fn fail_fmt() -> ! { loop {} }
```
is now
```rust
#[lang = "panic_fmt"] fn panic_fmt() -> ! { loop {} }
```
Related, lesser-implemented language items `fail` and
`fail_bounds_check` have become `panic` and `panic_bounds_check`, as
well. These are implemented by `libcore`, so it is unlikely (though
possible!) that these two renamings will affect you.
[breaking-change]
Fix test suite
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]
Use the `is_shorthand` field introduced by #17813 (ead6c4b) to make the
prettyprinter output the shorthand form. Fixes a few places that set
`is_shorthand: true` when the pattern is not a PatIdent with the same
name as the field.
This should be clearer, and fits in better with the `TTNonterminal` variant.
Renames:
- `TTTok` -> `TTToken`
- `TTDelim` -> `TTDelimited`
- `TTSeq` -> `TTSequence`
Rather than doing it top-down, with a known expected type, we will now simply establish the appropriate constraints between the pattern and the expression it destructures.
Closes#8783.
Closes#10200.
Adds an `assume` intrinsic that gets translated to llvm.assume. It is
used on a boolean expression and allows the optimizer to assume that
the expression is true.
This implements #18051.
Instead of checking patterns in a top-down fashion with a known
expected type on entry, this changes makes typeck establish
appropriate constraints between a pattern and the expression
it destructures, and lets inference compute the final types
or produce good error messages if it's impossible.
This installs signal handlers to print out stack overflow messages on Linux. It also ensures the main thread has a guard page.
This will catch stack overflows in external code. It's done in preparation of switching to stack probes (#16012).
I've done some simple tests with overflowing the main thread, native threads and green threads (with and without UV) on x86-64.
This might work on ARM, MIPS and x86-32.
I've been unable to run the test suite on this because of #16305.
This reverts commit a0ec902e23 "Avoid
unnecessary temporary on assignments".
Leaving out the temporary for the functions return value can lead to a
situation that conflicts with rust's aliasing rules.
Given this:
````rust
fn func(f: &mut Foo) -> Foo { /* ... */ }
fn bar() {
let mut foo = Foo { /* ... */ };
foo = func(&mut foo);
}
````
We effectively get two mutable references to the same variable `foo` at
the same time. One for the parameter `f`, and one for the hidden
out-pointer. So we can't just `trans_into` the destination directly, but
must use `trans` to get a new temporary slot from which the result can
be copied.
This is a large spring-cleaning commit now that the 0.12.0 release has passed removing an amount of deprecated functionality. This removes a number of deprecated crates (all still available as cargo packages in the rust-lang organization) as well as a slew of deprecated functions. All `#[crate_id]` support has also been removed.
I tried to avoid anything that was recently deprecated, but I may have missed something! The major pain points of this commit is the fact that rustc/syntax have `#[allow(deprecated)]`, but I've removed that annotation so moving forward they should be cleaned up as we go.
Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]
When translating the unboxing shim, account for the fact that the shim translation has already performed the necessary unboxing of input types and values when forwarding to the shimmed function. This prevents ICEing or generating incorrect code.
Closes#16739
Check object lifetime bounds in coercions, not just trait bounds. Fixes#18055.
r? @pcwalton
This is a [breaking change]. Change code like this:
fn foo(v: &[u8]) -> Box<Clone+'static> { ... }
to make the lifetimes agree:
// either...
fn foo(v: &'static[u8]) -> Box<Clone+'static> { box v }
// or ...
fn foo<'a>(v: &'a [u8]) -> Box<Clone+'a> { box v }
The representability-checking routine ```is_type_representable``` failed to detect structural recursion in some cases, leading to stack overflow later on.
The first problem was in the loop in the ```find_nonrepresentable``` function. We were improperly terminating the iteration if we saw a ```ContainsRecursive``` condition. We should have kept going in case a later member of the struct (or enum, etc) being examined was ```SelfRecursive```. The example from #17431 triggered this issue:
```rust
use std::sync::Mutex;
struct Foo { foo: Mutex<Option<Foo>> }
impl Foo { fn bar(self) {} }
fn main() {}
```
I'm not 100% sure, but I think the ```ty_enum``` case of ```fn type_structurally_recursive``` had a similar problem, since it could ```break``` on ```ContainsRecursive``` before looking at all variants. I've replaced this with a ```flat_map``` call.
The second problem was that we were failing to identify code like ```struct Foo { foo: Option<Option<Foo>> }``` as SelfRecursive, even though we correctly identified ```struct Foo { foo: Option<Foo> }```. This was caused by using DefId's for the ```ContainsRecursive``` check, which meant the nested ```Option```s were identified as illegally recursive (because ```ContainsRecursive``` is not an error, we would then keep compiling and eventually hit a stack overflow).
In order to make sure that we can recurse through the different ```Option``` invocations, I've changed the type of ```seen``` from ```Vec<DefId>``` to ```Vec<t>``` and added a separate ```same_type``` function to check whether two types are the same when generics are taken into account. Now we only return ```ContainsRecursive``` when this stricter check is satisfied. (There's probably a better way to do this, and I'm not sure my code is entirely correct--but my knowledge of rustc internals is pretty limited, so any help here would be appreciated!)
Note that the ```SelfRecursive``` check is still comparing ```DefId```s--this is necessary to prevent code like this from being allowed:
```rust
struct Foo { x: Bar<Foo> }
struct Bar<T> { x: Bar<Foo> }
```
All four of the new ```issue-17431``` tests cause infinite recursion on master, and errors with this pull request. I wrote the extra ```issue-3008-4.rs``` test to make sure I wasn't introducing a regression.
Fixes#17431.
This adds ‘help’ diagnostic messages to rustc. This is used for anything that provides help to the user, particularly the `--explain` messages that were previously integrated into the relevant error message.
They look like this:
```
match.rs:10:13: 10:14 error: unreachable pattern [E0001]
match.rs:10 1 => {},
^
match.rs:3:1: 3:38 note: in expansion of foo!
match.rs:7:5: 20:2 note: expansion site
match.rs:10:13: 10:14 help: pass `--explain E0001` to see a detailed explanation
```
(`help` is coloured cyan.) Adding these errors on a separate line stops the lines from being too long, as discussed in #16619.
detected (correctly) that there was only one impl and hence ignored the
`Self` bound completely. I (semi-arbitrarily) elected to delect the
impl, forcing the trait matcher to be more conservative and lean on the
where clauses in scope, yielding the original error message.
On 32-bit architectures, the size calculations on two of the tests wrap-around
in typeck, which gives the relevant arrays a size of 0, which is (correctly)
successfully allocated.
This is some improvement as asked and discused here: http://www.reddit.com/r/rust/comments/2j2ij3/benchmark_improvement_reverse_compliment/
Before:
```
real 0m0.396s
user 0m0.280s
sys 0m0.112s
```
after:
```
real 0m0.293s
user 0m0.216s
sys 0m0.076s
```
best C version:
```
real 0m0.135s
user 0m0.132s
sys 0m0.060s
```
Another possibility will be to add a `DoubleEndedIterator::next_two_side()` with a deffault implementation, and specialising it for slices, and use it here (`MutableSlice::reverse()` can then become safe). This benchmark will then be safe.
What do you think?
This improves the spectralnorm shootout benchmark through a few vectors after
looking at the leading C implementation:
* The simd-based f64x2 is now used to parallelize a few computations
* RWLock usage has been removed. A custom `parallel` function was added as a
form of stack-based fork-join parallelism. I found that the contention on the
locks was high as well as hindering other optimizations.
This does, however, introduce one `unsafe` block into the benchmarks, which
previously had none.
In terms of timings, the before and after numbers are:
```
$ time ./shootout-spectralnorm-before
./shootout-spectralnorm-before 2.07s user 0.71s system 324% cpu 0.857 total
$ time ./shootout-spectralnorm-before 5500
./shootout-spectralnorm-before 5500 11.88s user 1.13s system 459% cpu 2.830 total
$ time ./shootout-spectralnorm-after
./shootout-spectralnorm-after 0.58s user 0.01s system 280% cpu 0.210 tota
$ time ./shootout-spectralnorm-after 5500
./shootout-spectralnorm-after 5500 3.55s user 0.01s system 455% cpu 0.783 total
```
AsciiStr::to_lower is now AsciiStr::to_lowercase and AsciiStr::to_upper is AsciiStr::to_uppercase to match Ascii trait.
Part of issue #17790.
This is my first pull request so let me know if anything is incorrect.
Thanks!
[breaking-changes]
Adds an `assume` intrinsic that gets translated to llvm.assume. It is
used on a boolean expression and allows the optimizer to assume that
the expression is true.
This implements #18051.
librustc: Improve method autoderef/deref/index behavior more, and enable IndexMut on mutable vectors.
This fixes a bug whereby the mutability fixups for method behavior were
not kicking in after autoderef failed to happen at any level. It also
adds support for `Index` to the fixer-upper.
Closes#12825.
r? @pnkfelix
Previously it had some uninituitive conditionals due to the interaction
with the Rand construction and Clone reinitialisation to create
sequential identifying numbers. This replaces all that with just
constructing the DropCounters with the appropriate identifiers.
`IndexMut` on mutable vectors.
This fixes a bug whereby the mutability fixups for method behavior were
not kicking in after autoderef failed to happen at any level. It also
adds support for `Index` to the fixer-upper.
Closes#12825.
Previously it had some uninituitive conditionals due to the interaction
with the Rand construction and Clone reinitialisation to create
sequential identifying numbers. This replaces all that with just
constructing the DropCounters with the appropriate identifiers.
This improves the spectralnorm shootout benchmark through a few vectors after
looking at the leading C implementation:
* The simd-based f64x2 is now used to parallelize a few computations
* RWLock usage has been removed. A custom `parallel` function was added as a
form of stack-based fork-join parallelism. I found that the contention on the
locks was high as well as hindering other optimizations.
This does, however, introduce one `unsafe` block into the benchmarks, which
previously had none.
In terms of timings, the before and after numbers are:
```
$ time ./shootout-spectralnorm-before
./shootout-spectralnorm-before 2.07s user 0.71s system 324% cpu 0.857 total
$ time ./shootout-spectralnorm-before 5500
./shootout-spectralnorm-before 5500 11.88s user 1.13s system 459% cpu 2.830 total
$ time ./shootout-spectralnorm-after
./shootout-spectralnorm-after 0.58s user 0.01s system 280% cpu 0.210 tota
$ time ./shootout-spectralnorm-after 5500
./shootout-spectralnorm-after 5500 3.55s user 0.01s system 455% cpu 0.783 total
```
All deprecation warnings have been converted to errors. This includes
the warning for multiple cfgs on one item. We'll leave that as an error
for some period of time to ensure that all uses are updated before the
behavior changes from "or" to "and".
All deprecation warnings have been converted to errors. This includes
the warning for multiple cfgs on one item. We'll leave that as an error
for some period of time to ensure that all uses are updated before the
behavior changes from "or" to "and".
Doing so would incur deeply nested expansion of the tree with no useful
side effects. This is problematic for "wide" data types such as structs
with dozens of fields but where only a few are actually being matched or bound.
Most notably, matching a fixed slice would use a number of stack frames that
grows with the number of elements in the slice.
Fixes#17877.
Only one warning remain, and I can't find a way to remove it without doing more bound checks:
```
shootout-nbody.rs:105:36: 105:51 warning: use of deprecated item: use iter_mut, #[warn(deprecated)] on by default
shootout-nbody.rs:105 let bi = match b_slice.mut_shift_ref() {
```
using `split_at_mut` may be an option, but it will do more bound checking.
If anyone have an idea, I'll update this PR.
Implement multidispatch and conditional dispatch. Because we do not attempt to preserve crate concatenation, this is a backwards compatible change. This is not yet fully integrated into method dispatch, so "UFCS"-style wrappers must be used to take advantage of the new features (see the run-pass tests).
cc #17307 (multidispatch)
cc #5527 (trait reform -- conditional dispatch)
Because we no longer preserve crate concatenability, this deviates slightly from what was specified in the RFC. The motivation for this change is described in [this blog post](http://smallcultfollowing.com/babysteps/blog/2014/09/30/multi-and-conditional-dispatch-in-traits/). I will post an amendment to the RFC in due course but do not anticipate great controversy on this point -- particularly as the RFCs more important features (e.g., conditional dispatch) just don't work without the change.
This change is an implementation of [RFC 69][rfc] which adds a third kind of
global to the language, `const`. This global is most similar to what the old
`static` was, and if you're unsure about what to use then you should use a
`const`.
The semantics of these three kinds of globals are:
* A `const` does not represent a memory location, but only a value. Constants
are translated as rvalues, which means that their values are directly inlined
at usage location (similar to a #define in C/C++). Constant values are, well,
constant, and can not be modified. Any "modification" is actually a
modification to a local value on the stack rather than the actual constant
itself.
Almost all values are allowed inside constants, whether they have interior
mutability or not. There are a few minor restrictions listed in the RFC, but
they should in general not come up too often.
* A `static` now always represents a memory location (unconditionally). Any
references to the same `static` are actually a reference to the same memory
location. Only values whose types ascribe to `Sync` are allowed in a `static`.
This restriction is in place because many threads may access a `static`
concurrently. Lifting this restriction (and allowing unsafe access) is a
future extension not implemented at this time.
* A `static mut` continues to always represent a memory location. All references
to a `static mut` continue to be `unsafe`.
This is a large breaking change, and many programs will need to be updated
accordingly. A summary of the breaking changes is:
* Statics may no longer be used in patterns. Statics now always represent a
memory location, which can sometimes be modified. To fix code, repurpose the
matched-on-`static` to a `const`.
static FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
change this code to:
const FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
* Statics may no longer refer to other statics by value. Due to statics being
able to change at runtime, allowing them to reference one another could
possibly lead to confusing semantics. If you are in this situation, use a
constant initializer instead. Note, however, that statics may reference other
statics by address, however.
* Statics may no longer be used in constant expressions, such as array lengths.
This is due to the same restrictions as listed above. Use a `const` instead.
[breaking-change]
Closes#17718
[rfc]: https://github.com/rust-lang/rfcs/pull/246
parameter list.
This breaks code like:
fn f(a: int, a: int) { ... }
fn g<T,T>(a: T) { ... }
Change this code to not use the same name for a parameter. For example:
fn f(a: int, b: int) { ... }
fn g<T,U>(a: T) { ... }
Code like this is *not* affected, since `_` is not an identifier:
fn f(_: int, _: int) { ... } // OK
Closes#17568.
r? @alexcrichton
[breaking-change]
This change is an implementation of [RFC 69][rfc] which adds a third kind of
global to the language, `const`. This global is most similar to what the old
`static` was, and if you're unsure about what to use then you should use a
`const`.
The semantics of these three kinds of globals are:
* A `const` does not represent a memory location, but only a value. Constants
are translated as rvalues, which means that their values are directly inlined
at usage location (similar to a #define in C/C++). Constant values are, well,
constant, and can not be modified. Any "modification" is actually a
modification to a local value on the stack rather than the actual constant
itself.
Almost all values are allowed inside constants, whether they have interior
mutability or not. There are a few minor restrictions listed in the RFC, but
they should in general not come up too often.
* A `static` now always represents a memory location (unconditionally). Any
references to the same `static` are actually a reference to the same memory
location. Only values whose types ascribe to `Sync` are allowed in a `static`.
This restriction is in place because many threads may access a `static`
concurrently. Lifting this restriction (and allowing unsafe access) is a
future extension not implemented at this time.
* A `static mut` continues to always represent a memory location. All references
to a `static mut` continue to be `unsafe`.
This is a large breaking change, and many programs will need to be updated
accordingly. A summary of the breaking changes is:
* Statics may no longer be used in patterns. Statics now always represent a
memory location, which can sometimes be modified. To fix code, repurpose the
matched-on-`static` to a `const`.
static FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
change this code to:
const FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
* Statics may no longer refer to other statics by value. Due to statics being
able to change at runtime, allowing them to reference one another could
possibly lead to confusing semantics. If you are in this situation, use a
constant initializer instead. Note, however, that statics may reference other
statics by address, however.
* Statics may no longer be used in constant expressions, such as array lengths.
This is due to the same restrictions as listed above. Use a `const` instead.
[breaking-change]
[rfc]: https://github.com/rust-lang/rfcs/pull/246
Using reallocate(old_ptr, old_size, new_size, align) makes a lot more
sense than reallocate(old_ptr, new_size, align, old_size) and matches up
with the order used by existing platform APIs like mremap.
Closes#17837
[breaking-change]
This fixes a soundness problem where `Fn` unboxed closures can mutate free variables in the environment.
The following presently builds:
```rust
#![feature(unboxed_closures, overloaded_calls)]
fn main() {
let mut x = 0u;
let _f = |&:| x = 42;
}
```
However, this is equivalent to writing the following, which borrowck rightly rejects:
```rust
struct F<'a> {
x: &'a mut uint
}
impl<'a> Fn<(),()> for F<'a> {
#[rust_call_abi_hack]
fn call(&self, _: ()) {
*self.x = 42; // error: cannot assign to data in a `&` reference
}
}
fn main() {
let mut x = 0u;
let _f = F { x: &mut x };
}
```
This problem is unique to unboxed closures; boxed closures cannot be invoked through an immutable reference and are not subject to it.
This change marks upvars of `Fn` unboxed closures as freely aliasable in mem_categorization, which causes borrowck to reject attempts to mutate or mutably borrow them.
@zwarich pointed out that even with this change, there are remaining soundness issues related to regionck (issue #17403). This region issue affects boxed closures as well.
Closes issue #17780
parameter list.
This breaks code like:
fn f(a: int, a: int) { ... }
fn g<T,T>(a: T) { ... }
Change this code to not use the same name for a parameter. For example:
fn f(a: int, b: int) { ... }
fn g<T,U>(a: T) { ... }
Code like this is *not* affected, since `_` is not an identifier:
fn f(_: int, _: int) { ... } // OK
Closes#17568.
[breaking-change]
Apart from making the build system determine the LLDB version, this PR also fixes an issue with enums in LLDB pretty printers. In order for GDB's pretty printers to know for sure if a field of some value is an enum discriminant, I had rustc mark discriminant fields with the `artificial` DWARF tag. This worked out nicely for GDB but it turns out that one can't access artificial fields from LLDB. So I changed the debuginfo representation so that enum discriminants are marked by the special field name `RUST$ENUM$DISR` instead, which works in both cases.
The PR does not activate the LLDB test suite yet.
Using reallocate(old_ptr, old_size, new_size, align) makes a lot more
sense than reallocate(old_ptr, new_size, align, old_size) and matches up
with the order used by existing platform APIs like mremap.
Closes#17837
[breaking-change]
LLDB doesn't allow for reading 'artifical' fields (fields that are generated by the compiler). So do not mark, slice fields, enum discriminants, and GcBox value fields as artificial.
For example, this matcher: `fn $name:ident( $($param:ident : $pty:ty),* )` would fail when parsing `fn foo()`, because macro parser wouldn't realize that an ident cannot start with `)`.
This resolves#5902, and at least partially mitigates #9364 and #3232.
This began as an attempt to fix an ICE in borrowck (issue #17655), but the rabbit hole went pretty deep. I ended up plumbing support for capture-by-reference unboxed closures all the way into trans.
Closes issue #17655.
This rewrites them to the current `ItemStatic` production of the compiler, but I
want to get this into a snapshot. It will be illegal to use a `static` in a
pattern of a `match` statement, so all those current uses will need to be
rewritten to `const` once it's implemented. This requires that the stage0
snapshot is able to parse `const`.
cc #17718
The bitshifts were wrong in that they invoked undefined behavior and
only passed the lower byte of the presumed-to-be-32bit errno value.
Apparently all actually possible values for errno happen to be easily
under 256, so this didn't cause any actual problems.
This commit fixes the bitshifts, but doesn't generalize to errno types
that aren't 32bit.
Previously it output `partially moved` to eagerly. This updates it to be more
accurate and output `collaterally moved` for use of values that were invalidated
by moves out of different fields in the same struct.
Closes#15630.
This PR begins the process of [runtime removal](https://github.com/rust-lang/rfcs/pull/230) by dismantling the `librustuv` crate and associated event loop.
The result is that, while `libgreen` can still be used for task scheduling purposes, it will no longer be feasible to use green-threaded I/O.
Removing the libuv-based event loop eases the transition away from the runtime system, which will be done incrementally.
In terms of visible API changes, this PR:
* Removes `std::io::signal`, which was never implemented on the native threading model.
* Removes the `iotest!` macro, which was previously used to run I/O tests on both green and native threading models.
* Removes the `green_start!` macro for starting an application with a `librustuv` event loop.
* Removes the `librustuv` crate itself.
It also removes the `libuv` and `gyp` submodules and adjusts the build system and copyright notices accordingly.
If you wish to continue using `librustuv` and green-threaded I/O, consider using [green-rs](https://github.com/alexcrichton/green-rs/), which provides its own I/O stack.
This commit removes the `iotest!` macro from `std::io`. The macro was
primarily used to ensure that all io-related tests were run on both
libnative and libgreen/librustuv. However, now that the librustuv stack
is being removed, the macro is no longer needed.
See the [runtime removal
RFC](https://github.com/rust-lang/rfcs/pull/230) for more context.
[breaking-change]