Commit Graph

28852 Commits

Author SHA1 Message Date
Matthias Krüger
23d8847ae9
Rollup merge of #116748 - scottmcm:oops-typo, r=fee1-dead
Fix a spot I wrote the wrong word

I was reading this comment while I was looking at #116505, and it garden-path-sentence'd me, so fix that for people in the future.
2023-10-15 11:37:24 +02:00
Scott McMurray
5e572c7207 Fix a spot I wrote the wrong word 2023-10-14 15:22:41 -07:00
Guillaume Gomez
03cbf50c34
Rollup merge of #116576 - eduardosm:const-eval-wasm-target-features, r=RalfJung
const-eval: allow calling functions with targat features disabled at compile time in WASM

This is not unsafe on WASM, see https://github.com/rust-lang/rust/pull/84988

r? `@RalfJung`

Fixes https://github.com/rust-lang/rust/issues/116516
2023-10-14 22:35:05 +02:00
Eduardo Sánchez Muñoz
f9b1af6587 const-eval: allow calling functions with targat features disabled at compile time in WASM
This is not unsafe on WASM, see https://github.com/rust-lang/rust/pull/84988
2023-10-14 20:15:05 +02:00
Matthias Krüger
7d1b24f4bc
Rollup merge of #116715 - Nadrieril:patkind-error, r=oli-obk
Prevent more spurious unreachable pattern lints

Continues the work of https://github.com/rust-lang/rust/pull/115937 by introducing `PatKind::Error`, to be used instead of `PatKind::Wild` when an error was raised during pattern lowering. Most of match checking lints are skipped when a `PatKind::Error` is encountered. This avoids confusing extra warnings when a pattern is malformed. Now `PatKind::Wild` should indicate an actual wildcard pattern.

r? `@oli-obk`
2023-10-14 19:22:17 +02:00
Alex Macleod
59f6f044f5 Add Config::hash_untracked_state callback 2023-10-14 15:54:26 +00:00
bors
0233608c67 Auto merge of #116727 - matthiaskrgr:rollup-3qqdrny, r=matthiaskrgr
Rollup of 5 pull requests

Successful merges:

 - #116630 (Add ability to get lines/filename for Span in smir)
 - #116644 (remove outdated bootstrap FIXME)
 - #116695 (Fix a comment)
 - #116696 (Misc improvements)
 - #116704 (Fix AFIT lint message to mention pitfall)

r? `@ghost`
`@rustbot` modify labels: rollup
2023-10-14 15:07:25 +00:00
bors
495c5ddcf7 Auto merge of #116728 - matthiaskrgr:rollup-4xzcsnv, r=matthiaskrgr
Rollup of 5 pull requests

Successful merges:

 - #115653 (Guarantee that Layout::align returns a non-zero power of two)
 - #116577 (add `SAFETY` block on the usage of unsafe `getuid`)
 - #116618 (Add the V (vector) extension to the riscv64-linux-android target spec)
 - #116679 (Remove some unnecessary `unwrap`s)
 - #116689 (explicitly handle auto trait leakage in coherence)

r? `@ghost`
`@rustbot` modify labels: rollup
2023-10-14 13:17:25 +00:00
Matthias Krüger
45bcef3cd5
Rollup merge of #116689 - lcnr:auto-trait-hidden-ty-leak, r=compiler-errors
explicitly handle auto trait leakage in coherence

does not impact behavior but may avoid weird bugs in the future, cc https://github.com/rust-lang/trait-system-refactor-initiative/issues/65

r? ``@compiler-errors``
2023-10-14 13:48:20 +02:00
Matthias Krüger
30b2cc0cc3
Rollup merge of #116679 - estebank:rewrap-unwrap, r=oli-obk
Remove some unnecessary `unwrap`s
2023-10-14 13:48:19 +02:00
Matthias Krüger
f29dbe8885
Rollup merge of #116618 - chriswailes:riscv64-linux-android-vector, r=workingjubilee
Add the V (vector) extension to the riscv64-linux-android target spec

This feature has been enabled and tested internally in the Android project.
2023-10-14 13:48:19 +02:00
Nadrieril
89f75ff4d0 Skip most of check_match checks in the presence of PatKind::Error 2023-10-14 13:38:04 +02:00
Nadrieril
8646afb9c5 Use PatKind::Error instead of PatKind::Wild to report errors 2023-10-14 13:38:04 +02:00
Nadrieril
aab3b9327e Propagate pattern errors via a new PatKind::Error variant
Instead of via `Const::new_error`
2023-10-14 13:38:02 +02:00
Matthias Krüger
24116aebe0
Rollup merge of #116704 - compiler-errors:afit-lint-plus, r=tmandry
Fix AFIT lint message to mention pitfall

Addresses https://github.com/rust-lang/rust/pull/116184#issuecomment-1745194387 by adding a short note. Not sure exactly of the wording -- I don't think this should be a blocker for the stabilization PR since we can iterate on this lint's messaging in the next few weeks in the worst case.

r? `@tmandry` cc `@traviscross` `@jonhoo`
2023-10-14 13:36:29 +02:00
Matthias Krüger
6fef4f089f
Rollup merge of #116696 - c410-f3r:in-doc, r=petrochenkov
Misc improvements

cc https://github.com/rust-lang/rust/pull/116323#discussion_r1355282195

r? `@petrochenkov`
2023-10-14 13:36:28 +02:00
Matthias Krüger
e515116083
Rollup merge of #116695 - fee1-dead-contrib:fix-cmt, r=compiler-errors
Fix a comment
2023-10-14 13:36:28 +02:00
Matthias Krüger
3890ba9f14
Rollup merge of #116630 - ouz-a:smir_span_better, r=oli-obk
Add ability to get lines/filename for Span in smir

Wasn't sure about how to structure lines, so went with safest option, also I'm not sure why `span_to_lines` returns `vec`.

Addresses https://github.com/rust-lang/project-stable-mir/issues/44

r? ``@oli-obk``
2023-10-14 13:36:27 +02:00
bors
96c4dba794 Auto merge of #116702 - durin42:compress-debuginfo, r=compiler-errors
linker: also pass debuginfo compression flags

We support compressing debuginfo during codegen, but until this patch we didn't pass the flag to the linker. Doing so means we'll respect the requested compression even when building binaries or dylibs. This produces much smaller binaries: in my testing a debug build of ripgrep goes from 85M to 32M, and the target/ directory (after a clean build in both cases) goes from 508M to 329M just by enabling zlib compression of debuginfo.
2023-10-14 11:05:04 +00:00
Ralf Jung
9c417a4ad4 interpret: clean up AllocBytes 2023-10-14 12:29:16 +02:00
bors
139f63a6eb Auto merge of #116015 - EvanMerlock:master, r=oli-obk
const_eval: allow function pointer signatures containing &mut T in const contexts

potentially fixes #114994

We utilize a `TypeVisitor` here in order to more easily handle control flow.
- In the event the typekind the Visitor sees is a function pointer, we skip over it
- However, otherwise we do one of two things:
   - If we find a mutable reference, check it, then continue visiting types
   - If we find any other type, continue visiting types

This means we will check if the function pointer _itself_ is mutable, but not if any of the types _within_ are.
2023-10-14 09:18:28 +00:00
bors
481d45abec Auto merge of #115822 - compiler-errors:stabilize-rpitit, r=jackh726
Stabilize `async fn` and return-position `impl Trait` in trait

# Stabilization report

This report proposes the stabilization of `#![feature(return_position_impl_trait_in_trait)]` ([RPITIT][RFC 3425]) and `#![feature(async_fn_in_trait)]` ([AFIT][RFC 3185]). These are both long awaited features that increase the expressiveness of the Rust language and trait system.

Closes #91611

[RFC 3185]: https://rust-lang.github.io/rfcs/3185-static-async-fn-in-trait.html
[RFC 3425]: https://rust-lang.github.io/rfcs/3425-return-position-impl-trait-in-traits.html

## Updates from thread

The thread has covered two major concerns:

* [Given that we don't have RTN, what should we stabilize?](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731149475) -- proposed resolution is [adding a lint](https://github.com/rust-lang/rust/pull/115822#issuecomment-1728354622) and [careful messaging](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731136169)
* [Interaction between outlives bounds and capture semantics](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731153952) -- This is fixable in a forwards-compatible way via #116040, and also eventually via ATPIT.

## Stabilization Summary

This stabilization allows the following examples to work.

### Example of return-position `impl Trait` in trait definition

```rust
trait Bar {
    fn bar(self) -> impl Send;
}
```

This declares a trait method that returns *some* type that implements `Send`.  It's similar to writing the following using an associated type, except that the associated type is anonymous.

```rust
trait Bar {
    type _0: Send;
    fn bar(self) -> Self::_0;
}
```

### Example of return-position `impl Trait` in trait implementation

```rust
impl Bar for () {
    fn bar(self) -> impl Send {}
}
```

This defines a method implementation that returns an opaque type, just like [RPIT][RFC 1522] does, except that all in-scope lifetimes are captured in the opaque type (as is already true for `async fn` and as is expected to be true for RPIT in Rust Edition 2024), as described below.

[RFC 1522]: https://rust-lang.github.io/rfcs/1522-conservative-impl-trait.html

### Example of `async fn` in trait

```rust
trait Bar {
    async fn bar(self);
}

impl Bar for () {
    async fn bar(self) {}
}
```

This declares a trait method that returns *some* [`Future`](https://doc.rust-lang.org/core/future/trait.Future.html) and a corresponding method implementation.  This is equivalent to writing the following using RPITIT.

```rust
use core::future::Future;

trait Bar {
    fn bar(self) -> impl Future<Output = ()>;
}

impl Bar for () {
    fn bar(self) -> impl Future<Output = ()> { async {} }
}
```

The desirability of this desugaring being available is part of why RPITIT and AFIT are being proposed for stabilization at the same time.

## Motivation

Long ago, Rust added [RPIT][RFC 1522] and [`async`/`await`][RFC 2394].  These are major features that are widely used in the ecosystem.  However, until now, these feature could not be used in *traits* and trait implementations.  This left traits as a kind of second-class citizen of the language.  This stabilization fixes that.

[RFC 2394]: https://rust-lang.github.io/rfcs/2394-async_await.html

### `async fn` in trait

Async/await allows users to write asynchronous code much easier than they could before. However, it doesn't play nice with other core language features that make Rust the great language it is, like traits. Support for `async fn` in traits has been long anticipated and was not added before due to limitations in the compiler that have now been lifted.

`async fn` in traits will unblock a lot of work in the ecosystem and the standard library. It is not currently possible to write a trait that is implemented using `async fn`. The workarounds that exist are undesirable because they require allocation and dynamic dispatch, and any trait that uses them will become obsolete once native `async fn` in trait is stabilized.

We also have ample evidence that there is demand for this feature from the [`async-trait` crate][async-trait], which emulates the feature using dynamic dispatch. The async-trait crate is currently the #5 async crate on crates.io ranked by recent downloads, receiving over 78M all-time downloads. According to a [recent analysis][async-trait-analysis], 4% of all crates use the `#[async_trait]` macro it provides, representing 7% of all function and method signatures in trait definitions on crates.io. We think this is a *lower bound* on demand for the feature, because users are unlikely to use `#[async_trait]` on public traits on crates.io for the reasons already given.

[async-trait]: https://crates.io/crates/async-trait
[async-trait-analysis]: https://rust-lang.zulipchat.com/#narrow/stream/315482-t-compiler.2Fetc.2Fopaque-types/topic/RPIT.20capture.20rules.20.28capturing.20everything.29/near/389496292

### Return-position `impl Trait` in trait

`async fn` always desugars to a function that returns `impl Future`.

```rust!
async fn foo() -> i32 { 100 }

// Equivalent to:
fn foo() -> impl Future<Output = i32> { async { 100 } }
```

All `async fn`s today can be rewritten this way. This is useful because it allows adding behavior that runs at the time of the function call, before the first `.await` on the returned future.

In the spirit of supporting the same set of features on `async fn` in traits that we do outside of traits, it makes sense to stabilize this as well. As described by the [RPITIT RFC][rpitit-rfc], this includes the ability to mix and match the equivalent forms in traits and their corresponding impls:

```rust!
trait Foo {
    async fn foo(self) -> i32;
}

// Can be implemented as:
impl Foo for MyType {
    fn foo(self) -> impl Future<Output = i32> {
        async { 100 }
    }
}
```

Return-position `impl Trait` in trait is useful for cases beyond async, just as regular RPIT is. As a simple example, the RFC showed an alternative way of writing the `IntoIterator` trait with one fewer associated type.

```rust!
trait NewIntoIterator {
    type Item;
    fn new_into_iter(self) -> impl Iterator<Item = Self::Item>;
}

impl<T> NewIntoIterator for Vec<T> {
    type Item = T;
    fn new_into_iter(self) -> impl Iterator<Item = T> {
        self.into_iter()
    }
}
```

[rpitit-rfc]: https://rust-lang.github.io/rfcs/3425-return-position-impl-trait-in-traits.html

## Major design decisions

This section describes the major design decisions that were reached after the RFC was accepted:

- EDIT: Lint against async fn in trait definitions

    - Until the [send bound problem](https://smallcultfollowing.com/babysteps/blog/2023/02/01/async-trait-send-bounds-part-1-intro/) is resolved, the use of `async fn` in trait definitions could lead to a bad experience for people using work-stealing executors (by far the most popular choice). However, there are significant use cases for which the current support is all that is needed (single-threaded executors, such as those used in embedded use cases, as well as thread-per-core setups). We are prioritizing serving users well over protecting people from misuse, and therefore, we opt to stabilize the full range of functionality; however, to help steer people correctly, we are will issue a warning on the use of `async fn` in trait definitions that advises users about the limitations. (See [this summary comment](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731149475) for the details of the concern, and [this comment](https://github.com/rust-lang/rust/pull/115822#issuecomment-1728354622) for more details about the reasoning that led to this conclusion.)

- Capture rules:

    - The RFC's initial capture rules for lifetimes in impls/traits were found to be imprecisely precise and to introduce various inconsistencies. After much discussion, the decision was reached to make `-> impl Trait` in traits/impls capture *all* in-scope parameters, including both lifetimes and types. This is a departure from the behavior of RPITs in other contexts; an RFC is currently being authored to change the behavior of RPITs in other contexts in a future edition.

    - Major discussion links:

        - [Lang team design meeting from 2023-07-26](https://hackmd.io/sFaSIMJOQcuwCdnUvCxtuQ?view)

- Refinement:

    - The [refinement RFC] initially proposed that impl signatures that are more specific than their trait are not allowed unless the `#[refine]` attribute was included, but left it as an open question how to implement this. The stabilized proposal is that it is not a hard error to omit `#[refine]`, but there is a lint which fires if the impl's return type is more precise than the trait. This greatly simplified the desugaring and implementation while still achieving the original goal of ensuring that users do not accidentally commit to a more specific return type than they intended.

    - Major discussion links:

        - [Zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/.60.23.5Brefine.5D.60.20as.20a.20lint)

[refinement RFC]: https://rust-lang.github.io/rfcs/3245-refined-impls.html

## What is stabilized

### Async functions in traits and trait implementations

* `async fn` are now supported in traits and trait implementations.
* Associated functions in traits that are `async` may have default bodies.

### Return-position impl trait in traits and trait implementations

* Return-position `impl Trait`s are now supported in traits and trait implementations.
    * Return-position `impl Trait` in implementations are treated like regular return-position `impl Trait`s, and therefore behave according to the same inference rules for hidden type inference and well-formedness.
* Associated functions in traits that name return-position `impl Trait`s may have default bodies.
* Implementations may provide either concrete types or `impl Trait` for each corresponding `impl Trait` in the trait method signature.

For a detailed exploration of the technical implementation of return-position `impl Trait` in traits, see [the dev guide](https://rustc-dev-guide.rust-lang.org/return-position-impl-trait-in-trait.html).

### Mixing `async fn` in trait and return-position `impl Trait` in trait

A trait function declaration that is `async fn ..() -> T` may be satisfied by an implementation function that returns `impl Future<Output = T>`, or vice versa.

```rust
trait Async {
    async fn hello();
}

impl Async for () {
    fn hello() -> impl Future<Output = ()> {
        async {}
    }
}

trait RPIT {
    fn hello() -> impl Future<Output = String>;
}

impl RPIT for () {
    async fn hello() -> String {
        "hello".to_string()
    }
}
```

### Return-position `impl Trait` in traits and trait implementations capture all in-scope lifetimes

Described above in "major design decisions".

### Return-position `impl Trait` in traits are "always revealing"

When a trait uses `-> impl Trait` in return position, it logically desugars to an associated type that represents the return (the actual implementation in the compiler is different, as described below). The value of this associated type is determined by the actual return type written in the impl; if the impl also uses `-> impl Trait` as the return type, then the value of the associated type is an opaque type scoped to the impl method (similar to what you would get when calling an inherent function returning `-> impl Trait`). As with any associated type, the value of this special associated type can be revealed by the compiler if the compiler can figure out what impl is being used.

For example, given this trait:

```rust
trait AsDebug {
    fn as_debug(&self) -> impl Debug;
}
```

A function working with the trait generically is only able to see that the return value is `Debug`:

```rust
fn foo<T: AsDebug>(t: &T) {
    let u = t.as_debug();
    println!("{}", u); // ERROR: `u` is not known to implement `Display`
}
```

But if a function calls `as_debug` on a known type (say, `u32`), it may be able to resolve the return type more specifically, if that implementation specifies a concrete type as well:

```rust
impl AsDebug for u32 {
    fn as_debug(&self) -> u32 {
        *self
    }
}

fn foo(t: &u32) {
    let u: u32 = t.as_debug(); // OK!
    println!("{}",  t.as_debug()); // ALSO OK (since `u32: Display`).
}
```

The return type used in the impl therefore represents a **semver binding** promise from the impl author that the return type of `<u32 as AsDebug>::as_debug` will not change. This could come as a surprise to users, who might expect that they are free to change the return type to any other type that implements `Debug`. To address this, we include a [`refining_impl_trait` lint](https://github.com/rust-lang/rust/pull/115582) that warns if the impl uses a specific type -- the `impl AsDebug for u32` above, for example, would toggle the lint.

The lint message explains what is going on and encourages users to `allow` the lint to indicate that they meant to refine the return type:

```rust
impl AsDebug for u32 {
    #[allow(refining_impl_trait)]
    fn as_debug(&self) -> u32 {
        *self
    }
}
```

[RFC #3245](https://github.com/rust-lang/rfcs/pull/3245) proposed a new attribute, `#[refine]`, that could also be used to "opt-in" to refinements like this (and which would then silence the lint). That RFC is not currently implemented -- the `#[refine]` attribute is also expected to reveal other details from the signature and has not yet been fully implemented.

### Return-position `impl Trait` and `async fn` in traits are opted-out of object safety checks when the parent function has `Self: Sized`

```rust
trait IsObjectSafe {
    fn rpit() -> impl Sized where Self: Sized;
    async fn afit() where Self: Sized;
}
```

Traits that mention return-position `impl Trait` or `async fn` in trait when the associated function includes a `Self: Sized` bound will remain object safe. That is because the associated function that defines them will be opted-out of the vtable of the trait, and the associated types will be unnameable from any trait object.

This can alternatively be seen as a consequence of https://github.com/rust-lang/rust/pull/112319#issue-1742251747 and the desugaring of return-position `impl Trait` in traits to associated types which inherit the where-clauses of the associated function that defines them.

## What isn't stabilized (aka, potential future work)

### Dynamic dispatch

As stabilized, traits containing RPITIT and AFIT are **not dyn compatible**. This means that you cannot create `dyn Trait` objects from them and can only use static dispatch. The reason for this limitation is that dynamic dispatch support for RPITIT and AFIT is more complex than static dispatch, as described on the [async fundamentals page](https://rust-lang.github.io/async-fundamentals-initiative/evaluation/challenges/dyn_traits.html). The primary challenge to using `dyn Trait` in today's Rust is that **`dyn Trait` today must list the values of all associated types**. This means you would have to write `dyn for<'s> Trait<Foo<'s> = XXX>` where `XXX` is the future type defined by the impl, such as `F_A`. This is not only verbose (or impossible), it also uniquely ties the `dyn Trait` to a particular impl, defeating the whole point of `dyn Trait`.

The precise design for handling dynamic dispatch is not yet determined. Top candidates include:

- [callee site selection][], in which we permit unsized return values so that the return type for an `-> impl Foo` method be can be `dyn Foo`, but then users must specify the type of wide pointer at the call-site in some fashion.

- [`dyn*`][], where we create a built-in encapsulation of a "wide pointer" and map the associated type corresponding to an RPITIT to the corresponding `dyn*` type (`dyn*` itself is not exposed to users as a type in this proposal, though that could be a future extension).

[callee site selection]: https://smallcultfollowing.com/babysteps/blog/2022/09/21/dyn-async-traits-part-9-callee-site-selection/

[`dyn*`]: https://smallcultfollowing.com/babysteps/blog/2022/03/29/dyn-can-we-make-dyn-sized/

### Where-clause bounds on return-position `impl Trait` in traits or async futures (RTN/ART)

One limitation of async fn in traits and RPITIT as stabilized is that there is no way for users to write code that adds additional bounds beyond those listed in the `-> impl Trait`. The most common example is wanting to write a generic function that requires that the future returned from an `async fn` be `Send`:

```rust
trait Greet {
    async fn greet(&self);
}

fn greet_in_parallel<G: Greet>(g: &G) {
    runtime::spawn(async move {
        g.greet().await; //~ ERROR: future returned by `greet` may not be `Send`
    })
}
```

Currently, since the associated types added for the return type are anonymous, there is no where-clause that could be added to make this code compile.

There have been various proposals for how to address this problem (e.g., [return type notation][rtn] or having an annotation to give a name to the associated type), but we leave the selection of one of those mechanisms to future work.

[rtn]: https://smallcultfollowing.com/babysteps/blog/2023/02/13/return-type-notation-send-bounds-part-2/

In the meantime, there are workarounds that one can use to address this problem, listed below.

#### Require all futures to be `Send`

For many users, the trait may only ever be used with `Send` futures, in which case one can write an explicit `impl Future + Send`:

```rust
trait Greet {
    fn greet(&self) -> impl Future<Output = ()> + Send;
}
```

The nice thing about this is that it is still compatible with using `async fn` in the trait impl. In the async working group case studies, we found that this could work for the [builder provider API](https://rust-lang.github.io/async-fundamentals-initiative/evaluation/case-studies/builder-provider-api.html). This is also the default approach used by the `#[async_trait]` crate which, as we have noted, has seen widespread adoption.

#### Avoid generics

This problem only applies when the `Self` type is generic. If the `Self` type is known, then the precise return type from an `async fn` is revealed, and the `Send` bound can be inferred thanks to auto-trait leakage. Even in cases where generics may appear to be required, it is sometimes possible to rewrite the code to avoid them. The [socket handler refactor](https://rust-lang.github.io/async-fundamentals-initiative/evaluation/case-studies/socket-handler.html) case study provides one such example.

### Unify capture behavior for `-> impl Trait` in inherent methods and traits

As stabilized, the capture behavior for `-> impl Trait` in a trait (whether as part of an async fn or a RPITIT) captures all types and lifetimes, whereas the existing behavior for inherent methods only captures types and lifetimes that are explicitly referenced. Capturing all lifetimes in traits was necessary to avoid various surprising inconsistencies; the expressed intent of the lang team is to extend that behavior so that we also capture all lifetimes in inherent methods, which would create more consistency and also address a common source of user confusion, but that will have to happen over the 2024 edition. The RFC is in progress. Should we opt not to accept that RFC, we can bring the capture behavior for `-> impl Trait` into alignment in other ways as part of the 2024 edition.

### `impl_trait_projections`

Orthgonal to `async_fn_in_trait` and `return_position_impl_trait_in_trait`, since it can be triggered on stable code. This will be stabilized separately in [#115659](https://github.com/rust-lang/rust/pull/115659).

<details>
If we try to write this code without `impl_trait_projections`, we will get an error:

```rust
#![feature(async_fn_in_trait)]

trait Foo {
    type Error;
    async fn foo(&mut self) -> Result<(), Self::Error>;
}

impl<T: Foo> Foo for &mut T {
    type Error = T::Error;
    async fn foo(&mut self) -> Result<(), Self::Error> {
        T::foo(self).await
    }
}
```

The error relates to the use of `Self` in a trait impl when the self type has a lifetime. It can be worked around by rewriting the impl not to use `Self`:

```rust
#![feature(async_fn_in_trait)]

trait Foo {
    type Error;
    async fn foo(&mut self) -> Result<(), Self::Error>;
}

impl<T: Foo> Foo for &mut T {
    type Error = T::Error;
    async fn foo(&mut self) -> Result<(), <&mut T as Foo>::Error> {
        T::foo(self).await
    }
}
```
</details>

## Tests

Tests are generally organized between return-position `impl Trait` and `async fn` in trait, when the distinction matters.
* RPITIT: https://github.com/rust-lang/rust/tree/master/tests/ui/impl-trait/in-trait
* AFIT: https://github.com/rust-lang/rust/tree/master/tests/ui/async-await/in-trait

## Remaining bugs and open issues

* #112047: Indirection introduced by `async fn` and return-position `impl Trait` in traits may hide cycles in opaque types, causing overflow errors that can only be discovered by monomorphization.
* #111105 - `async fn` in trait is susceptible to issues with checking auto traits on futures' generators, like regular `async`. This is a manifestation of #110338.
    * This was deemed not blocking because fixing it is forwards-compatible, and regular `async` is subject to the same issues.
* #104689: `async fn` and return-position `impl Trait` in trait requires the late-bound lifetimes in a trait and impl function signature to be equal.
    * This can be relaxed in the future with a smarter lexical region resolution algorithm.
* #102527: Nesting return-position `impl Trait` in trait deeply may result in slow compile times.
    * This has only been reported once, and can be fixed in the future.
* #108362: Inference between return types and generics of a function may have difficulties when there's an `.await`.
    * This isn't related to AFIT (https://github.com/rust-lang/rust/issues/108362#issuecomment-1717927918) -- using traits does mean that there's possibly easier ways to hit it.
* #112626: Because `async fn` and return-position `impl Trait` in traits lower to associated types, users may encounter strange behaviors when implementing circularly dependent traits.
    * This is not specific to RPITIT, and is a limitation of associated types: https://github.com/rust-lang/rust/issues/112626#issuecomment-1603405105
* **(Nightly)** #108309: `async fn` and return-position `impl Trait` in trait do not support specialization. This was deemed not blocking, since it can be fixed in the future (e.g. #108321) and specialization is a nightly feature.

#### (Nightly) Return type notation bugs

RTN is not being stabilized here, but there are some interesting outstanding bugs. None of them are blockers for AFIT/RPITIT, but I'm noting them for completeness.

<details>

* #109924 is a bug that occurs when a higher-ranked trait bound has both inference variables and associated types. This is pre-existing -- RTN just gives you a more convenient way of producing them. This should be fixed by the new trait solver.
* #109924 is a manifestation of a more general issue with `async` and auto-trait bounds: #110338. RTN does not cause this issue, just allows us to put `Send` bounds on the anonymous futures that we have in traits.
* #112569 is a bug similar to associated type bounds, where nested bounds are not implied correctly.

</details>

## Alternatives

### Do nothing

We could choose not to stabilize these features. Users that can use the `#[async_trait]` macro would continue to do so. Library maintainers would continue to avoid async functions in traits, potentially blocking the stable release of many useful crates.

### Stabilize `impl Trait` in associated type instead

AFIT and RPITIT solve the problem of returning unnameable types from trait methods. It is also possible to solve this by using another unstable feature, `impl Trait` in an associated type. Users would need to define an associated type in both the trait and trait impl:

```rust!
trait Foo {
    type Fut<'a>: Future<Output = i32> where Self: 'a;
    fn foo(&self) -> Self::Fut<'_>;
}

impl Foo for MyType {
    type Fut<'a> where Self: 'a = impl Future<Output = i32>;
    fn foo(&self) -> Self::Fut<'_> {
        async { 42 }
    }
}
```

This also has the advantage of allowing generic code to bound the associated type. However, it is substantially less ergonomic than either `async fn` or `-> impl Future`, and users still expect to be able to use those features in traits. **Even if this feature were stable, we would still want to stabilize AFIT and RPITIT.**

That said, we can have both. `impl Trait` in associated types is desireable because it can be used in existing traits with explicit associated types, among other reasons. We *should* stabilize this feature once it is ready, but that's outside the scope of this proposal.

### Use the old capture semantics for RPITIT

We could choose to make the capture rules for RPITIT consistent with the existing rules for RPIT. However, there was strong consensus in a recent [lang team meeting](https://hackmd.io/sFaSIMJOQcuwCdnUvCxtuQ?view) that we should *change* these rules, and furthermore that new features should adopt the new rules.

This is consistent with the tenet in RFC 3085 of favoring ["Uniform behavior across editions"](https://rust-lang.github.io/rfcs/3085-edition-2021.html#uniform-behavior-across-editions) when possible. It greatly reduces the complexity of the feature by not requiring us to answer, or implement, the design questions that arise out of the interaction between the current capture rules and traits. This reduction in complexity – and eventual technical debt – is exactly in line with the motivation listed in the aforementioned RFC.

### Make refinement a hard error

Refinement (`refining_impl_trait`) is only a concern for library authors, and therefore doesn't really warrant making into a deny-by-default warning or an error.

Additionally, refinement is currently checked via a lint that compares bounds in the `impl Trait`s in the trait and impl syntactically. This is good enough for a warning that can be opted-out, but not if this were a hard error, which would ideally be implemented using fully semantic, implicational logic. This was implemented (#111931), but also is an unnecessary burden on the type system for little pay-off.

## History

- Dec 7, 2021: [RFC #3185: Static async fn in traits](https://rust-lang.github.io/rfcs/3185-static-async-fn-in-trait.html) merged
- Sep 9, 2022: [Initial implementation](https://github.com/rust-lang/rust/pull/101224) of AFIT and RPITIT landed
- Jun 13, 2023: [RFC #3425: Return position `impl Trait` in traits](https://rust-lang.github.io/rfcs/3425-return-position-impl-trait-in-traits.html) merged

<!--These will render pretty when pasted into github-->
Non-exhaustive list of PRs that are particularly relevant to the implementation:

- #101224
- #103491
- #104592
- #108141
- #108319
- #108672
- #112988
- #113182 (later made redundant by #114489)
- #113215
- #114489
- #115467
- #115582

Doc co-authored by `@nikomatsakis,` `@tmandry,` `@traviscross.` Thanks also to `@spastorino,` `@cjgillot` (for changes to opaque captures!), `@oli-obk` for many reviews, and many other contributors and issue-filers. Apologies if I left your name off 😺
2023-10-14 07:29:08 +00:00
bors
39acbed8d6 Auto merge of #116407 - Mark-Simulacrum:bootstrap-bump, r=onur-ozkan
Bump bootstrap compiler to just-released beta

https://forge.rust-lang.org/release/process.html#master-bootstrap-update-t-2-day-tuesday
2023-10-14 05:44:48 +00:00
bors
75a5dd05bc Auto merge of #115524 - RalfJung:misalign, r=wesleywiser
const-eval: make misalignment a hard error

It's been a future-incompat error (showing up in cargo's reports) since https://github.com/rust-lang/rust/pull/104616, Rust 1.68, released in March.  That should be long enough.

The question for the lang team is simply -- should we move ahead with this, making const-eval alignment failures a hard error? (It turns out some of them accidentally already were hard errors since #104616. But not all so this is still a breaking change. Crater found no regression.)
2023-10-14 00:57:09 +00:00
Michael Goulet
ef04c9795b Deprecate E0706 2023-10-13 21:01:36 +00:00
Michael Goulet
59315b8a63 Stabilize AFIT and RPITIT 2023-10-13 21:01:36 +00:00
Esteban Küber
feedd68f80 Remove some unnecessary unwraps 2023-10-13 20:36:41 +00:00
bors
09eff44889 Auto merge of #116645 - estebank:issue-116608, r=oli-obk
Detect ruby-style closure in parser

When parsing a closure without a body that is surrounded by a block, suggest moving the opening brace after the closure head.

Fix #116608.
2023-10-13 19:26:27 +00:00
Esteban Küber
20c622e456 Tweak wording 2023-10-13 19:18:46 +00:00
Esteban Küber
781e86477c Suggest trait bounds for used associated type on type param
Fix #101351.

When an associated type on a type parameter is used, and the type
parameter isn't constrained by the correct trait, suggest the
appropriate trait bound:

```
error[E0220]: associated type `Associated` not found for `T`
 --> file.rs:6:15
  |
6 |     field: T::Associated,
  |               ^^^^^^^^^^ there is a similarly named associated type `Associated` in the trait `Foo`
  |
help: consider restricting type parameter `T`
  |
5 | struct Generic<T: Foo> {
  |                 +++++
  ```

When an associated type on a type parameter has a typo, suggest fixing
it:

```
error[E0220]: associated type `Baa` not found for `T`
  --> $DIR/issue-55673.rs:9:8
   |
LL |     T::Baa: std::fmt::Debug,
   |        ^^^ there is a similarly named associated type `Bar` in the trait `Foo`
   |
help: change the associated type name to use `Bar` from `Foo`
   |
LL |     T::Bar: std::fmt::Debug,
   |        ~~~
```
2023-10-13 19:13:56 +00:00
Michael Goulet
362b75badf Fix AFIT lint message to mention pitfall 2023-10-13 19:13:18 +00:00
Augie Fackler
321572503d linker: also pass debuginfo compression flags
We support compressing debuginfo during codegen, but until this patch we
didn't pass the flag to the linker. Doing so means we'll respect the
requested compression even when building binaries or dylibs. This
produces much smaller binaries: in my testing a debug build of ripgrep
goes from 85M to 32M, and the target/ directory (after a clean build in
both cases) goes from 508M to 329M just by enabling zlib compression of
debuginfo.
2023-10-13 13:49:36 -04:00
Chris Wailes
166c353484 Lowercase the feature flags for riscv64-linux-android 2023-10-13 10:01:14 -07:00
Caio
6b59f6fbea Misc improvements 2023-10-13 10:22:33 -03:00
Deadbeef
eae6e02eba Fix a comment 2023-10-13 12:57:38 +00:00
bors
34bc5716b5 Auto merge of #116676 - estebank:issue-116658, r=compiler-errors
On type error involving closure, avoid ICE

When we encounter a type error involving a closure, we try to typeck prior closure invocations to see if they influenced the current expected type. When trying to do so, ensure that the closure was defined in our current scope.

Fix #116658.
2023-10-13 10:29:55 +00:00
lcnr
1bc6ae4401 explicitly handle auto trait leakage in coherence 2023-10-13 09:42:51 +00:00
Michael Goulet
e805151fd4 Bless tests and new warnings due to formatting changes 2023-10-13 09:31:36 +00:00
Michael Goulet
b2d2184ede Format all the let chains in compiler 2023-10-13 08:59:36 +00:00
Oğuz Ağcayazı
d6a55d3409 change fn name, return loc info, local name 2023-10-13 11:44:38 +03:00
bors
a4a10bdf29 Auto merge of #116666 - Urgau:check-cfg-pre-mcp636, r=petrochenkov
Improve check-cfg diagnostics

This PR tries to improve some of the diagnostics of check-cfg.

The main changes is the unexpected name or value being added to the main diagnostic:
```diff
- warning: unexpected `cfg` condition name
+ warning: unexpected `cfg` condition name: `widnows`
```

It also cherry-pick the better sensible logic for when we print the list of expected values when we have a matching value for a very similar name.

Address https://github.com/rust-lang/rust/pull/111072#discussion_r1356818100

r? `@petrochenkov`
2023-10-13 08:37:27 +00:00
bors
2763ca50da Auto merge of #116619 - nnethercote:rustc_driver_impl, r=compiler-errors
Streamline `rustc_driver_impl` pretty-printing.

This PR simplifies a lot of unnecessary structure in
`rustc_driver_impl/src/pretty.rs`. It removes some traits and functions,
simplifies some structs, renames some things for increased consistency, and
eliminates some boilerplate code. Overall it cuts more than 150 lines of code.

r? `@compiler-errors`
2023-10-13 05:35:29 +00:00
bors
130ff8cb6c Auto merge of #115964 - bjorn3:cgu_reuse_tracker_global_state, r=cjgillot
Remove cgu_reuse_tracker from Session

This removes a bit of global mutable state.

It will now miss post-lto cgu reuse when ThinLTO determines that a cgu doesn't get changed, but there weren't any tests for this anyway and a test for it would be fragile to the exact implementation of ThinLTO in LLVM.
2023-10-13 00:09:30 +00:00
Esteban Küber
e7618756c0 On type error involving closure, avoid ICE
When we encounter a type error involving a closure, we try to typeck
prior closure invocations to see if they influenced the current expected
type. When trying to do so, ensure that the closure was defined in our
current scope.

Fix #116658.
2023-10-12 23:29:02 +00:00
Esteban Küber
6b2c6c7fd3 Detect ruby-style closure in parser
When parsing a closure without a body that is surrounded by a block,
suggest moving the opening brace after the closure head.

Fix #116608.
2023-10-12 21:50:18 +00:00
bors
e20cb77021 Auto merge of #116391 - Nadrieril:constructorset, r=cjgillot
exhaustiveness: Rework constructor splitting

`SplitWildcard` was pretty opaque. I replaced it with a more legible abstraction: `ConstructorSet` represents the set of constructors for patterns of a given type. This clarifies responsibilities: `ConstructorSet` handles one clear task, and diagnostic-related shenanigans can be done separately.

I'm quite excited, I had has this in mind for years but could never quite introduce it. This opens up possibilities, including type-specific optimisations (like using a `FxHashSet` to collect enum variants, which had been [hackily attempted some years ago](https://github.com/rust-lang/rust/pull/76918)), my one-pass rewrite (https://github.com/rust-lang/rust/pull/116042), and future librarification.
2023-10-12 21:33:31 +00:00
Nicholas Nethercote
2b4c33817a Remove unneeded pubs. 2023-10-13 06:35:19 +11:00
Nicholas Nethercote
2e2924f263 Split and rename the annotation structs.
`NoAnn` and `IdentifiedAnnotation` impl both `pprust_ast::PpAnn` and
`pprust_hir::PpAnn`, which is a bit confusing, because the optional
`tcx` is only needed for the HIR cases. (Currently the `tcx` is
unnecessarily provided in the `expanded` AST cases.)

This commit splits each one into `Ast` and `Hir` versions, which makes
things clear about where the `tcx` is needed. The commit also renames
all the traits so they consistently end with `Ann`.
2023-10-13 06:35:19 +11:00
Nicholas Nethercote
b65227a9ee Make needs_analysis true for PpHirMode::Typed.
This avoids the need for a bespoke `tcx.analysis()` call.
2023-10-13 06:35:19 +11:00
Nicholas Nethercote
ba58e3213d Rename some 'hir lifetimes as 'tcx.
Because they all end up within a `TyCtxt`.
2023-10-13 06:35:19 +11:00
Nicholas Nethercote
060851b764 Remove pretty-printing traits.
`call_with_pp_support_ast` and `call_with_pp_support_hir` how each have
a single call site. This commit inlines and removes them, which also
removes the need for all the supporting traits: `Sess`,
`AstPrinterSupport`, and `HirPrinterSupport`. The `sess` member is also
removed from several structs.
2023-10-13 06:35:17 +11:00
Nicholas Nethercote
7d145a0fde Merge print_* functions.
The handling of the `PpMode` variants is currently spread across three
functions: `print_after_parsing`, `print_after_hir_lowering`, and
`print_with_analysis`. Each one handles some of the variants. This split
is primarily because `print_after_parsing` has slightly different
arguments to the other two.

This commit changes the structure. It merges the three functions into a
single `print` function, and encapsulates the different arguments in a
new enum `PrintExtra`.

Benefits:
- The code is a little shorter.
- All the `PpMode` variants are handled in a single `match`, with no
  need for `unreachable!` arms.
- It enables the trait removal in the subsequent commit by reducing
  the number of `call_with_pp_support_ast` call sites from two to one.
2023-10-13 06:34:55 +11:00
Nicholas Nethercote
e3d8bbbfe2 Simplify support traits.
First, both `AstPrinterSupport` and `HirPrinterSupport` have a `sess`
method. This commit introduces a `Sess` trait and makes the support
traits be subtraits of `Sess`, to avoid some duplication.

Second, both support traits have a `pp_ann` method that isn't needed if
we enable `trait_upcasting`. This commit removes those methods.

(Both of these traits will be removed in a subsequent commit, as will
the `trait_upcasting` use.)
2023-10-13 06:20:11 +11:00
Nicholas Nethercote
d5e7c5f3cc Remove unused PrinterSupport::hir_map method. 2023-10-13 06:20:11 +11:00
Nicholas Nethercote
1467ba06b6 Remove PpAstTreeMode.
It's simpler to distinguish the two AST modes directly in `PpMode`.
2023-10-13 06:20:11 +11:00
Nicholas Nethercote
87090a97e3 Remove an outdated comment.
`phase_3_run_analysis_passes` no longer exists, and AFAICT this code has
been refactored so much since this comment was written that it no longer
has any useful meaning.
2023-10-13 06:20:11 +11:00
Nicholas Nethercote
c5cfcdc4ac Remove unnecessary call to call_with_pp_support_hir.
The callback is trivial and no pp support is actually needed. This makes
the `HirTree` case more like the `AstTree` case above.
2023-10-13 06:20:11 +11:00
Nicholas Nethercote
ef8701a4a0 Rename some things.
- Rename `pprust` as `pprust_ast`, to align with `pprust_hir`.
- Rename `PrinterSupport` as `AstPrinterSupport`, to align with
  `HirPrinterSupport`.
2023-10-13 06:20:11 +11:00
bors
df4379b4eb Auto merge of #116510 - scottmcm:no-1-simd-v2, r=compiler-errors
Copy 1-element arrays as scalars, not vectors

For `[T; 1]` it's silly to copy as `<1 x T>` when we can just copy as `T`.

Inspired by https://github.com/rust-lang/rust/issues/101210#issuecomment-1732470941, which pointed out that `Option<[u8; 1]>` was codegenning worse than `Option<u8>`.

(I'm not sure *why* LLVM doesn't optimize out `<1 x u8>`, but might as well just not emit it in the first place in this codepath.)

---

I think I bit off too much in #116479; let me try just the scalar case first.

r? `@ghost`
2023-10-12 18:45:01 +00:00
Urgau
001a65c4b0 check-cfg: only print the list of expected names once 2023-10-12 18:39:35 +02:00
Urgau
dcfc484b09 check-cfg: mention the unexpected name and value in the primary message 2023-10-12 18:39:04 +02:00
Urgau
72815dc08f check-cfg: adjust expected names and values when useful 2023-10-12 18:39:04 +02:00
Matthias Krüger
4832811b0d
Rollup merge of #116654 - Zalathar:reloop-traversal, r=oli-obk
coverage: Clarify loop-edge detection and graph traversal

This is a collection of improvements to two semi-related pieces of code:

- The code in `counters` that detects which graph edges don't exit a loop, and would therefore be good candidates to have their coverage computed as an expression rather than having a physical counter.
- The code in `graph` that traverses the coverage BCB graph in a particular order, and tracks loops and loop edges along the way (which is relevant to the above).

I was originally only planning to make the `graph` changes, but there was going to be a lot of indentation churn in `counters` anyway, and once I started looking I noticed a lot of opportunities for simplification.

---

`@rustbot` label +A-code-coverage
2023-10-12 18:36:44 +02:00
Matthias Krüger
5f90bee663
Rollup merge of #116642 - weiznich:diagnostic_on_unimplemented_improvements, r=compiler-errors
Handle several `#[diagnostic::on_unimplemented]` attributes correctly

This PR fixes an issues where rustc would ignore subsequent `#[diagnostic::on_unimplemented]` attributes. The [corresponding RFC](https://rust-lang.github.io/rfcs/3368-diagnostic-attribute-namespace.html) specifies that the first matching instance of each option is used. Invalid attributes are linted and otherwise ignored.
2023-10-12 18:36:44 +02:00
Matthias Krüger
4b1867a9ee
Rollup merge of #116625 - nnethercote:rustc_hir_pretty, r=fee1-dead
`rustc_hir_pretty` cleanups

Just some improvements I found while looking through this code.

r? ``@fee1-dead``
2023-10-12 18:36:43 +02:00
bors
19149d1ea9 Auto merge of #116649 - nnethercote:improve-print_tts-precursors, r=petrochenkov
Token cleanups

Some precursors to #114571 that are worth merging even if the main part of #114571 doesn't get merged.

r? `@petrochenkov`
2023-10-12 13:10:14 +00:00
Zalathar
d99ab97b02 coverage: Simplify adding BCB successors to the traversal worklists 2023-10-12 22:37:58 +11:00
Zalathar
59f4f1c89d coverage: Don't store loop backedges in the traversal context
As long as we store the loop header BCB, we can look up its incoming loop
backedges as needed.
2023-10-12 21:41:13 +11:00
Zalathar
15360b3bc8 coverage: Store a graph reference in the graph traversal struct
Having to keep passing in a graph reference was a holdover from when the graph
was partly mutated during traversal. As of #114354 that is no longer necessary,
so we can simplify the traversal code by storing a graph reference as a field
in `TraverseCoverageGraphWithLoops`.
2023-10-12 21:41:13 +11:00
Zalathar
ea3fb7bc2c coverage: Use a VecDeque for loop traversal worklists
The previous code was storing the worklist in a vector, and then selectively
adding items to the start or end of the vector. That's a perfect use-case for a
double-ended queue.

This change also reveals that the existing code was a bit confused about which
end of the worklist is the front or back. For now, items are always removed
from the front of the queue (instead of the back), and code that adds items to
the queue has been flipped, to preserve the existing behaviour.
2023-10-12 21:41:13 +11:00
Zalathar
d1920c5181 coverage: Rename next_bcb to just bcb
This is the only BCB that `TraverseCoverageGraphWithLoops::next` works with, so
calling it `next_bcb` just makes the code less clear.
2023-10-12 21:41:13 +11:00
Zalathar
a7ae2a6e6c coverage: Simplify the detection of reloop edges to be given expressions 2023-10-12 21:41:13 +11:00
bors
4f05e95452 Auto merge of #116628 - gurry:116293-dup-note.rs, r=petrochenkov
Fix duplicate note on internal feature gates with associated issues

Fixes #116293

Note sure if I should add tests because the issue occurs only for feature gates having associated issues and that set of feature gates will change unpredictably leading to an unnecessary churn in tests.
2023-10-12 07:57:51 +00:00
bors
3d575a2f2e Auto merge of #113487 - estebank:sugg-113174, r=oli-obk
Use structured suggestion for #113174

When encountering a for loop that is rejected by the borrow checker because it is being advanced within its body, provide a structured suggestion for `while let Some(pat) = iter.next()`.
2023-10-12 02:34:07 +00:00
Gurinder Singh
66e643d0f8 Fix duplicate note on internal feature gate
The BuiltinInternalFeatures gate already has a struct level #[note]
attribute. The additional note field in it caused a duplicate to be
displayed when it was set to Some(...) which happened when the
feature had an associated issue
2023-10-12 07:22:41 +05:30
Nicholas Nethercote
66c2b77a4a Rename tt_prepend_space as space_between.
And reorder the arguments. I find it easier to think about this way.
2023-10-12 08:50:42 +11:00
Nicholas Nethercote
33aff5b152 Use TokenStream::token_alone in one place. 2023-10-12 08:46:16 +11:00
Nicholas Nethercote
bb9c2f50c3 Reorder an expression to improve readability. 2023-10-12 08:46:15 +11:00
Nicholas Nethercote
becf4942a2 Rename Token::is_op as Token::is_punct.
For consistency with `proc_macro::Punct`.
2023-10-12 08:46:15 +11:00
Georg Semmler
232aaeba7c
Handle several #[diagnostic::on_unimplemented] attributes correctly
This PR fixes an issues where rustc would ignore subsequent
`#[diagnostic::on_unimplemented]` attributes. The [corresponding
RFC](https://rust-lang.github.io/rfcs/3368-diagnostic-attribute-namespace.html)
specifies that the first matching instance of each option is used.
Invalid attributes are linted and otherwise ignored.
2023-10-11 22:01:59 +02:00
bors
475c71da07 Auto merge of #116640 - matthiaskrgr:rollup-xt9r5ir, r=matthiaskrgr
Rollup of 5 pull requests

Successful merges:

 - #116219 (Relate alias ty with variance)
 - #116315 (Do not check for impossible predicates in const-prop lint.)
 - #116436 (Structurally normalize for closure)
 - #116597 (Prevent showing methods from blanket impls of not available foreign traits to show up in the search results)
 - #116627 (small cleanup)

r? `@ghost`
`@rustbot` modify labels: rollup
2023-10-11 19:02:49 +00:00
Esteban Küber
9d2eb66e1a Use structured suggestion for #113174
When encountering a for loop that is rejected by the borrow checker
because it is being advanced within its body, provide a structured
suggestion for `while let Some(pat) = iter.next()`.
2023-10-11 18:26:44 +00:00
Matthias Krüger
8374805d67
Rollup merge of #116627 - fee1-dead-contrib:cleanup, r=spastorino
small cleanup

this is exactly the same as the `lower_param_bounds` function, so use that instead
2023-10-11 20:08:22 +02:00
Matthias Krüger
3712ea82f3
Rollup merge of #116436 - compiler-errors:structurally-normalize-for-closure, r=lcnr
Structurally normalize for closure

Fixes some signature deduction problems in the new trait solver (and in the case of async, an ICE).

r? lcnr
2023-10-11 20:08:21 +02:00
Matthias Krüger
9b7e0af80d
Rollup merge of #116315 - cjgillot:cpl-clean, r=petrochenkov
Do not check for impossible predicates in const-prop lint.

The enclosing query already checks for them, and replaces the body with a single `unreachable` if they are indeed impossible.
2023-10-11 20:08:20 +02:00
Matthias Krüger
8ddc0df1f1
Rollup merge of #116219 - compiler-errors:relate-alias-ty-with-variance, r=lcnr
Relate alias ty with variance

In the new solver, turns out that the subst-relate branch of the alias-relate predicate was relating args invariantly even for opaques, which have variance 💀.

This change is a bit more invasive, but I'd rather not special-case it [here](aeaa5c30e5/compiler/rustc_trait_selection/src/solve/alias_relate.rs (L171-L190)) and then have it break elsewhere. I'm doing a perf run to see if the extra call to `def_kind` is that expensive, if it is, I'll reconsider.

r? ``@lcnr``
2023-10-11 20:08:20 +02:00
bors
c1691db366 Auto merge of #113218 - lqd:polonius-scopes, r=jackh726
Compute NLL loan scopes using the polonius model

For a *location-insensitive* analysis (that is, without expressiveness improvements for users yet), this PR implements loans going out of scope using reachability and liveness, rather than checking if the issuing region's values contain a given CFG point. This is equivalent to NLL scopes and computes the same data.

r? `@matthewjasper`

A couple of notes:
- there are some assumptions about SCC representatives, placeholders, free regions, and member constraints that I believe hold, and they're documented in the code
- this passes all the UI tests with `-Zpolonius=next` -- the perf is [not terrible](https://github.com/rust-lang/rust/pull/112432#issuecomment-1749685862) and there are a bunch of ways to improve it in the future.
- there's a fixme left, hopefully Matthew you know a clean way to get the information it mentions.
2023-10-11 16:46:03 +00:00
Oğuz Ağcayazı
1d9481fdc8 implement get_filename/lines for span 2023-10-11 17:55:57 +03:00
bors
3c23df4935 Auto merge of #115937 - oli-obk:spurious_unreachable_pattern, r=Nadrieril
Prevent spurious `unreachable pattern` lints

But it means we'll get more `non-exhaustive` patterns

fixes https://github.com/rust-lang/rust/issues/78057

r? `@Nadrieril` `@RalfJung`
2023-10-11 14:49:49 +00:00
Oli Scherer
eca786cd14 Remember the ErrorReported used to silence follow up errors instead of recreating it with delay_span_bug 2023-10-11 12:49:57 +00:00
Oli Scherer
e83467c3b8 Avoid emitting the non_exhaustive error if other errors already occurred 2023-10-11 12:49:57 +00:00
Oli Scherer
d1fd11f3f9 Prevent spurious unreachable pattern lints
Means you'll get more `non-exhaustive` patterns
2023-10-11 12:49:57 +00:00
bors
5aa23be6b6 Auto merge of #116014 - lqd:mcp510-2-electric-boogaloo, r=petrochenkov
Implement `-Clink-self-contained=-linker` opt out

This implements the `-Clink-self-contained` opt out necessary to switch to lld by changing rustc's defaults instead of cargo's.

Components that are enabled and disabled on the CLI are recorded, for the purpose of being merged with the ones which the target spec will declare (I'll open another PR for that tomorrow, for easier review).

For MCP510, we now check whether using the self-contained linker is disabled on the CLI. Right now it would only be sensible to with `-Zgcc-ld=lld` (and I'll add some checks that we don't both enable and disable a component on the CLI in a future PR), but the goal is to simplify adding the check of the target's enabled components here in the follow-up PRs.

r? `@petrochenkov`
2023-10-11 12:11:39 +00:00
bors
71704c4f84 Auto merge of #116623 - Nadrieril:validate-range-endpoints, r=oli-obk
Fix overflow checking in range patterns

When a range pattern contains an overflowing literal, if we're not careful we might not notice the overflow and use the wrapped value. This makes for confusing error messages because linting against overflowing literals is only done in a later pass. So when a range is invalid we check for overflows to provide a better error.

This check didn't use to handle negative types; this PR fixes that. First commit adds tests, second cleans up without changing behavior, third does the fix.

EDIT: while I was at it, I fixed a small annoyance about the span of the overflow lint on negated literals.

Fixes https://github.com/rust-lang/rust/issues/94239
2023-10-11 10:07:19 +00:00
Deadbeef
50b6f46f71 small cleanup 2023-10-11 08:25:43 +00:00
bors
6d05c430d2 Auto merge of #115948 - notriddle:notriddle/logo-lockup, r=fmease
rustdoc: show crate name beside smaller logo

*Blocked on https://github.com/rust-lang/cargo/pull/12800*

## Summary

In this PR, the crate name and version are always shown in the sidebar, even in subpages, and the lateral navigation is always shown in the sidebar, even in modules.

Clicking the crate name does the same thing clicking the logo always did: take you to the crate root (the crate's home page, at least within Rustdoc).

The Rust logo is also no longer shown by default for non-Rust docs.

### Screenshots

<details><summary>Before</summary>

| | Macro | Module |
|--|-------|--------|
| In crate | ![image](https://github.com/rust-lang/rust/assets/1593513/d5db0a46-2bb6-44a2-a3aa-2d915ecb8595) |![image](https://github.com/rust-lang/rust/assets/1593513/61f8c1ee-c298-4e2c-b791-18ecb79ab83b)
| In module[^1] | ![image](https://github.com/rust-lang/rust/assets/1593513/73abca59-0b69-4650-a1e2-7278ca34795c) | ![image](https://github.com/rust-lang/rust/assets/1593513/0baf02c2-2ec7-4674-80e5-a6a74a973376)

[^1]: This PR also includes a bug fix for derive macros not showing up in the lateral navigation part of the sidebar

</details>

#### Whole sidebar screenshots

| | Macro | Module |
|--|-------|--------|
| In crate | ![image](https://github.com/rust-lang/rust/assets/1593513/75d1bd07-41f7-4f11-ba24-fd5476e0586a) | ![image](https://github.com/rust-lang/rust/assets/1593513/52960259-2b65-4131-b380-01826f0a0eb7)
| In module | ![image](https://github.com/rust-lang/rust/assets/1593513/06e57928-8cb0-41bd-b152-be16cc53e5ec) | ![image](https://github.com/rust-lang/rust/assets/1593513/37291c69-2a07-4467-a382-d9b029084a47)

#### Different logo configurations

|         | Short crate name | Long crate name |
|---------|------------------|-----------------|
| Root    | ![short-root]    | ![long-root]
| Subpage | ![short-subpage] | ![long-subpage]

[short-root]: https://github.com/rust-lang/rust/assets/1593513/9e2b4fa8-f581-4106-b562-1e0372c13f79
[short-subpage]: https://github.com/rust-lang/rust/assets/1593513/8331cdb8-fa13-4671-a1e2-dcc1cdca7451
[long-root]: https://github.com/rust-lang/rust/assets/1593513/7d377fec-0f1d-4343-9f82-0e35a8f58056
[long-subpage]: https://github.com/rust-lang/rust/assets/1593513/3b3094a4-63c9-477c-8c15-b6075837df30

##### Without a logo

![image](https://github.com/rust-lang/rust/assets/1593513/66672b79-6c59-4be8-a527-25ef6f0b04ab)

### Preview pages

https://notriddle.com/rustdoc-html-demo-5/sidebar-layout-rocket/rocket/index.html

https://notriddle.com/rustdoc-html-demo-5/sidebar-layout-rocket/rocket_sync_db_pools/index.html

https://notriddle.com/rustdoc-html-demo-5/sidebar-layout-rust-compiler/index.html

https://notriddle.com/rustdoc-html-demo-5/sidebar-layout-rust/std/index.html

https://notriddle.com/rustdoc-html-demo-5/sidebar-layout-rocket/tokio/index.html

## Motivation

This improves visual information density (the construct with the logo and crate name is *shorter* than the logo on its own, because it's not square) and navigation clarity (we can now see what clicking the Rust logo does, specifically).

Compare this with the layout at [Phoenix's Hexdocs] (which is what this proposal is closely based on), the old proposal on [Internals Discourse] (which always says "Rust standard library" in the sidebar, but doesn't do the side-by-side layout).

[Phoenix's Hexdocs]: https://hexdocs.pm/phoenix/1.7.7/overview.html
[Internals Discourse]: https://internals.rust-lang.org/t/poc-of-a-new-design-for-the-generated-rustdoc/11018

## Guide-level explanation

This PR cleans up some of the sidebar navigation.

It makes the logo in the desktop sidebar a bit smaller, and puts the crate name and version next to it (either beside it, or below it, depending on if there's space), making it clearer what clicking on it does: click the crate name to open the crate's home page. It also removes the Rust logo from non-official-Rust crates, again to make the navigation and supply chain clearer (since the crate name has been added, the logo is no longer necessary for navigation).

It adds a bit more clarifying information for lateral navigation. On items that don't add their own sidebar items, it just shows its siblings directly below the crate name and logo, but for other items, it shows "In crate alloc" instead of just "In alloc". It also shows the lateral navigation tools on module pages, making modules consistent with every other item.

## Drawbacks

While this actually takes up less screen real estate than the old layout on desktop, it takes up more HTML. It's also a bit more visually complex.

## Rationale and alternatives

I could do what the Internals POC did and keep the vertically stacked layout all the time, instead of doing a horizontal stack where possible. It would take up more screen real estate, though.

## Prior art

This design is lifted almost verbatim from Hexdocs. It seems to work for them. [`opentelemetry_process_propagator`], for example, has a long application name.

[`opentelemetry_process_propagator`]: https://hexdocs.pm/opentelemetry_process_propagator/OpentelemetryProcessPropagator.html

## Unresolved questions

Maybe we should encourage crate authors to include their own logo more often? It certainly helps give people a better sense of "place." This seems to be blocked on coming up with an API to do it without requiring them to host the file somewhere.

## Future possibilities

Beyond this, plenty of other changes could be made to improve the layout, like

* Fix things so that clicking an item in the sidebar doesn't cause it to scroll back to the top.
  * The [Internals demo](https://utherii.github.io/new.html) does this right: clicking an item in the sidebar changes the content area, but the sidebar itself does not change. This is nice, because clicking is cheap and I can skim the opening few paragraphs while browsing.
  * The layout of the docs sidebar causes trouble to implement this, because it's different on different pages, but at least fix this on the file browser.
* Come up with a less cluttered way to do disclosure. There's a lot of `[-]` on the page.
  * We don't lack ideas to fix this one. We have *too many*.
* Do a better job of separating local navigation (vec::Vec links to vec::IntoIter) and the table of contents (vec::Vec links to vec::Vec::new).
  * A possibility: add a Back arrow next to the "In [module]" header?
    ![image](https://github.com/rust-lang/rust/assets/1593513/e969faf7-7722-457a-b8c6-8d962e9e1e23)
* Give readers more control of how much rustdoc shows them, and giving doc authors more control of how much it generates. Basically, https://github.com/rust-lang/rust/pull/115660 is great, let's do it too.

But those are mostly orthogonal, not future possibilities unlocked by this change.
2023-10-11 06:28:36 +00:00
Nadrieril
dcdddb7a60 Fix span of overflow lint for negated literals 2023-10-11 04:55:55 +02:00
Nadrieril
1baf8bf54d Fix range overflow checking 2023-10-11 04:55:55 +02:00
Nadrieril
1e1174b034 Rework error handling when lowering range endpoints 2023-10-11 04:54:49 +02:00
bors
36cbf944b3 Auto merge of #116621 - aliemjay:rollup-0e2of3c, r=aliemjay
Rollup of 4 pull requests

Successful merges:

 - #95967 (Add explicit-endian String::from_utf16 variants)
 - #116530 (delay a bug when encountering an ambiguity in MIR typeck)
 - #116611 (Document `diagnostic_namespace` feature)
 - #116612 (Remove unused dominator iterator)

r? `@ghost`
`@rustbot` modify labels: rollup
2023-10-11 01:49:27 +00:00