A weak pointer inside itself will have its destructor run when the last
strong pointer to that data disappears, so we need to make sure that the
Weak and Rc destructors don't duplicate work (i.e. freeing).
By making the Rcs effectively take a weak pointer, we ensure that no
Weak destructor will free the pointer while still ensuring that Weak
pointers can't be upgraded to strong ones as the destructors run.
This approach of starting weak at 1 is what libstdc++ does.
Fixes#12046.
This is part of the overall strategy I would like to take when approaching
issue #11165. The only two I/O objects that reasonably want to be "split" are
the network stream objects. Everything else can be "split" by just creating
another version.
The initial idea I had was the literally split the object into a reader and a
writer half, but that would just introduce lots of clutter with extra interfaces
that were a little unnnecssary, or it would return a ~Reader and a ~Writer which
means you couldn't access things like the remote peer name or local socket name.
The solution I found to be nicer was to just clone the stream itself. The clone
is just a clone of the handle, nothing fancy going on at the kernel level.
Conceptually I found this very easy to wrap my head around (everything else
supports clone()), and it solved the "split" problem at the same time.
The cloning support is pretty specific per platform/lib combination:
* native/win32 - uses some specific WSA apis to clone the SOCKET handle
* native/unix - uses dup() to get another file descriptor
* green/all - This is where things get interesting. When we support full clones
of a handle, this implies that we're allowing simultaneous writes
and reads to happen. It turns out that libuv doesn't support two
simultaneous reads or writes of the same object. It does support
*one* read and *one* write at the same time, however. Some extra
infrastructure was added to just block concurrent writers/readers
until the previous read/write operation was completed.
I've added tests to the tcp/unix modules to make sure that this functionality is
supported everywhere.
This is part of the overall strategy I would like to take when approaching
issue #11165. The only two I/O objects that reasonably want to be "split" are
the network stream objects. Everything else can be "split" by just creating
another version.
The initial idea I had was the literally split the object into a reader and a
writer half, but that would just introduce lots of clutter with extra interfaces
that were a little unnnecssary, or it would return a ~Reader and a ~Writer which
means you couldn't access things like the remote peer name or local socket name.
The solution I found to be nicer was to just clone the stream itself. The clone
is just a clone of the handle, nothing fancy going on at the kernel level.
Conceptually I found this very easy to wrap my head around (everything else
supports clone()), and it solved the "split" problem at the same time.
The cloning support is pretty specific per platform/lib combination:
* native/win32 - uses some specific WSA apis to clone the SOCKET handle
* native/unix - uses dup() to get another file descriptor
* green/all - This is where things get interesting. When we support full clones
of a handle, this implies that we're allowing simultaneous writes
and reads to happen. It turns out that libuv doesn't support two
simultaneous reads or writes of the same object. It does support
*one* read and *one* write at the same time, however. Some extra
infrastructure was added to just block concurrent writers/readers
until the previous read/write operation was completed.
I've added tests to the tcp/unix modules to make sure that this functionality is
supported everywhere.
- `extra::json` didn't make the cut, because of `extra::json`'s required
dep on `extra::TreeMap`. If/when `extra::TreeMap` moves out of `extra`,
then `extra::json` could move into `libserialize`
- `libextra`, `libsyntax` and `librustc` depend on the newly created
`libserialize`
- The extensions to various `extra` types like `DList`, `RingBuf`, `TreeMap`
and `TreeSet` for `Encodable`/`Decodable` were moved into the respective
modules in `extra`
- There is some trickery, evident in `src/libextra/lib.rs` where a stub
of `extra::serialize` is set up (in `src/libextra/serialize.rs`) for
use in the stage0 build, where the snapshot rustc is still making
deriving for `Encodable` and `Decodable` point at extra. Big props to
@huonw for help working out the re-export solution for this
- @pcwalton's change in 449a7a8 didn't sneak back in
- `extra::json` didn't make the cut, because of `extra::json` required
dep on `extra::TreeMap`. If/when `extra::TreeMap` moves out of `extra`,
then `extra::json` could move into `serialize`
- `libextra`, `libsyntax` and `librustc` depend on the newly created
`libserialize`
- The extensions to various `extra` types like `DList`, `RingBuf`, `TreeMap`
and `TreeSet` for `Encodable`/`Decodable` were moved into the respective
modules in `extra`
- There is some trickery, evident in `src/libextra/lib.rs` where a stub
of `extra::serialize` is set up (in `src/libextra/serialize.rs`) for
use in the stage0 build, where the snapshot rustc is still making
deriving for `Encodable` and `Decodable` point at extra. Big props to
@huonw for help working out the re-export solution for this
extra: inline extra::serialize stub
fix stuff clobbered in rebase + don't reexport serialize::serialize
no more globs in libserialize
syntax: fix import of libserialize traits
librustc: fix bad imports in encoder/decoder
add serialize dep to librustdoc
fix failing run-pass tests w/ serialize dep
adjust uuid dep
more rebase de-clobbering for libserialize
fixing tests, pushing libextra dep into cfg(test)
fix doc code in extra::json
adjust index.md links to serialize and uuid library
This time everything should be okay, No break due to a failed merge or rebase...
Sorry for the abuse of pull request.
So this move extra::sync, extra::arc, extra::future, extra::comm and extra::task_pool to libsync.
Previously, the check-fast and check-lite test suites weren't picking up all
target crates, rather just std/extra. In order to ensure that all of our crates
work on windows, I've modified these rules to build the test suites for all
TARGET_CRATES members. Note that this still excludes rustc/syntax/rustdoc.
This allows patch adds a new arc type that allows for creation of copy-on-write data structures. The idea is that it is safe to mutate any data structure as long as it has only one reference to it. If there are multiple, it requires cloning of the data structure before mutation is possible.
Let's try this again.
This is an implementation of mutexes which I believe is free from undefined behavior of OS mutexes (the pitfall of the previous implementation).
This implementation is not ideal. There's a yield-loop spot, and it's not particularly fair with respect to lockers who steal without going through the normal code paths. That being said, I believe that this is a correct implementation which is a stepping stone to move from.
I haven't done rigorous benchmarking of this mutex, but preliminary results show that it's about 25% slower in the uncontended case on linux (same runtime on OSX), and it's actually faster than a pthreads mutex on high contention (again, not rigorous benchmarking, I just saw these numbers come up).