Go to file
Alex Crichton 56080c4767 Implement clone() for TCP/UDP/Unix sockets
This is part of the overall strategy I would like to take when approaching
issue #11165. The only two I/O objects that reasonably want to be "split" are
the network stream objects. Everything else can be "split" by just creating
another version.

The initial idea I had was the literally split the object into a reader and a
writer half, but that would just introduce lots of clutter with extra interfaces
that were a little unnnecssary, or it would return a ~Reader and a ~Writer which
means you couldn't access things like the remote peer name or local socket name.

The solution I found to be nicer was to just clone the stream itself. The clone
is just a clone of the handle, nothing fancy going on at the kernel level.
Conceptually I found this very easy to wrap my head around (everything else
supports clone()), and it solved the "split" problem at the same time.

The cloning support is pretty specific per platform/lib combination:

* native/win32 - uses some specific WSA apis to clone the SOCKET handle
* native/unix - uses dup() to get another file descriptor
* green/all - This is where things get interesting. When we support full clones
              of a handle, this implies that we're allowing simultaneous writes
              and reads to happen. It turns out that libuv doesn't support two
              simultaneous reads or writes of the same object. It does support
              *one* read and *one* write at the same time, however. Some extra
              infrastructure was added to just block concurrent writers/readers
              until the previous read/write operation was completed.

I've added tests to the tcp/unix modules to make sure that this functionality is
supported everywhere.
2014-02-05 11:43:49 -08:00
man Remove rustpkg. 2014-02-02 03:08:56 -05:00
mk extra: Move uuid to libuuid 2014-02-04 06:44:02 +02:00
src Implement clone() for TCP/UDP/Unix sockets 2014-02-05 11:43:49 -08:00
.gitattributes
.gitignore Rewrite the doc makefile for doc => src/doc 2014-02-02 10:59:27 -08:00
.gitmodules
.mailmap
AUTHORS.txt
configure
CONTRIBUTING.md
COPYRIGHT
LICENSE-APACHE
LICENSE-MIT
Makefile.in Remove VPATH usage in Makefiles 2014-02-02 10:59:14 -08:00
README.md Remove rustpkg. 2014-02-02 03:08:56 -05:00
RELEASES.txt

The Rust Programming Language

This is a compiler for Rust, including standard libraries, tools and documentation.

Quick Start

Windows

  1. Download and use the installer and MinGW.
  2. Read the tutorial.
  3. Enjoy!

Note: Windows users can read the detailed getting started notes on the wiki.

Linux / OS X

  1. Make sure you have installed the dependencies:

    • g++ 4.4 or clang++ 3.x
    • python 2.6 or later (but not 3.x)
    • perl 5.0 or later
    • GNU make 3.81 or later
    • curl
  2. Download and build Rust:

    You can either download a tarball or build directly from the repo.

    To build from the tarball do:

     $ curl -O http://static.rust-lang.org/dist/rust-0.9.tar.gz
     $ tar -xzf rust-0.9.tar.gz
     $ cd rust-0.9
    

    Or to build from the repo do:

     $ git clone https://github.com/mozilla/rust.git
     $ cd rust
    

    Now that you have Rust's source code, you can configure and build it:

     $ ./configure
     $ make && make install
    

    Note: You may need to use sudo make install if you do not normally have permission to modify the destination directory. The install locations can be adjusted by passing a --prefix argument to configure. Various other options are also supported, pass --help for more information on them.

    When complete, make install will place several programs into /usr/local/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. system.

  3. Read the tutorial.

  4. Enjoy!

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

  • Windows (7, 8, Server 2008 R2), x86 only
  • Linux (2.6.18 or later, various distributions), x86 and x86-64
  • OSX 10.7 (Lion) or greater, x86 and x86-64

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Rust currently needs about 1.5 GiB of RAM to build without swapping; if it hits swap, it will take a very long time to build.

There is a lot more documentation in the wiki.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.