interpret: support for per-byte provenance
Also factors the provenance map into its own module.
The third commit does the same for the init mask. I can move it in a separate PR if you prefer.
Fixes https://github.com/rust-lang/miri/issues/2181
r? `@oli-obk`
- bump simd compare to 32bytes
- import small slice compare code from memmem crate
- try a few different probe bytes to avoid degenerate cases
- but special-case 2-byte needles
Add `rustc_deny_explicit_impl`
Also adjust `E0322` error message to be more general, since it's used for `DiscriminantKind` and `Pointee` as well.
Also add `rustc_deny_explicit_impl` on the `Tuple` and `Destruct` marker traits.
Remove unused symbols and diagnostic items
As the title suggests, this removes unused symbols from `sym::` and `#[rustc_diagnostic_item]` annotations that weren't mentioned anywhere.
Originally I tried to use grep, to find symbols and item names that are never mentioned via `sym::name`, however this produced a lot of false positives (?), for example clippy matching on `Symbol::as_str` or macros "implicitly" adding `sym::`. I ended up fixing all these false positives (?) by hand, but tbh I'm not sure if it was worth it...
Based on Wojciech Muła's "SIMD-friendly algorithms for substring searching"[0]
The two-way algorithm is Big-O efficient but it needs to preprocess the needle
to find a "criticla factorization" of it. This additional work is significant
for short needles. Additionally it mostly advances needle.len() bytes at a time.
The SIMD-based approach used here on the other hand can advance based on its
vector width, which can exceed the needle length. Except for pathological cases,
but due to being limited to small needles the worst case blowup is also small.
benchmarks taken on a Zen2:
```
16CGU, OLD:
test str::bench_contains_short_short ... bench: 27 ns/iter (+/- 1)
test str::bench_contains_short_long ... bench: 667 ns/iter (+/- 29)
test str::bench_contains_bad_naive ... bench: 131 ns/iter (+/- 2)
test str::bench_contains_bad_simd ... bench: 130 ns/iter (+/- 2)
test str::bench_contains_equal ... bench: 148 ns/iter (+/- 4)
16CGU, NEW:
test str::bench_contains_short_short ... bench: 8 ns/iter (+/- 0)
test str::bench_contains_short_long ... bench: 135 ns/iter (+/- 4)
test str::bench_contains_bad_naive ... bench: 130 ns/iter (+/- 2)
test str::bench_contains_bad_simd ... bench: 292 ns/iter (+/- 1)
test str::bench_contains_equal ... bench: 3 ns/iter (+/- 0)
1CGU, OLD:
test str::bench_contains_short_short ... bench: 30 ns/iter (+/- 0)
test str::bench_contains_short_long ... bench: 713 ns/iter (+/- 17)
test str::bench_contains_bad_naive ... bench: 131 ns/iter (+/- 3)
test str::bench_contains_bad_simd ... bench: 130 ns/iter (+/- 3)
test str::bench_contains_equal ... bench: 148 ns/iter (+/- 6)
1CGU, NEW:
test str::bench_contains_short_short ... bench: 10 ns/iter (+/- 0)
test str::bench_contains_short_long ... bench: 111 ns/iter (+/- 0)
test str::bench_contains_bad_naive ... bench: 135 ns/iter (+/- 3)
test str::bench_contains_bad_simd ... bench: 274 ns/iter (+/- 2)
test str::bench_contains_equal ... bench: 4 ns/iter (+/- 0)
```
[0] http://0x80.pl/articles/simd-strfind.html#sse-avx2
The `max` variable is unused. This change introduces the `min_plus`
variable, to make the example similar to the one from `saturating_abs`.
An alternative would be to remove the unused variable.
Fixed some `_i32` notation in `maybe_uninit`’s doc
This PR just changed two lines in the documentation for `MaybeUninit`:
```rs
let val = 0x12345678i32;
```
was changed to:
```rs
let val = 0x12345678_i32;
```
in two doctests, making the values a tad easier to read.
It does not seem like there are other literals needing this change in the file.
Stabilize const char convert
Split out `const_char_from_u32_unchecked` from `const_char_convert` and stabilize the rest, i.e. stabilize the following functions:
```Rust
impl char {
pub const fn from_u32(self, i: u32) -> Option<char>;
pub const fn from_digit(self, num: u32, radix: u32) -> Option<char>;
pub const fn to_digit(self, radix: u32) -> Option<u32>;
}
// Available through core::char and std::char
mod char {
pub const fn from_u32(i: u32) -> Option<char>;
pub const fn from_digit(num: u32, radix: u32) -> Option<char>;
}
```
And put the following under the `from_u32_unchecked` const stability gate as it needs `Option::unwrap` which isn't const-stable (yet):
```Rust
impl char {
pub const unsafe fn from_u32_unchecked(i: u32) -> char;
}
// Available through core::char and std::char
mod char {
pub const unsafe fn from_u32_unchecked(i: u32) -> char;
}
```
cc the tracking issue #89259 (which I'd like to keep open for `const_char_from_u32_unchecked`).
Use `derive_const` and rm manual StructuralEq impl
This does not change any semantics of the impl except for the const stability. It should be fine because trait methods and const bounds can never be used in stable without enabling `const_trait_impl`.
cc `@oli-obk`
Add small clarification around using pointers derived from references
r? `@RalfJung`
One question about your example from https://github.com/rust-lang/libs-team/issues/122: at what point does UB arise? If writing 0 does not cause UB and the reference `x` is never read or written to (explicitly or implicitly by being wrapped in another data structure) after the call to `foo`, does UB only arise when dropping the value? I don't really get that since I thought references were always supposed to point to valid data?
```rust
fn foo(x: &mut NonZeroI32) {
let ptr = x as *mut NonZeroI32;
unsafe { ptr.cast::<i32>().write(0); } // no UB here
// What now? x is considered garbage when?
}
```
Improve performance of `rem_euclid()` for signed integers
such code is copy from
https://github.com/rust-lang/rust/blob/master/library/std/src/f32.rs and
https://github.com/rust-lang/rust/blob/master/library/std/src/f64.rs
using `r+rhs.abs()` is faster than calc it with an if clause. Bench result:
```
$ cargo bench
Compiling div-euclid v0.1.0 (/me/div-euclid)
Finished bench [optimized] target(s) in 1.01s
Running unittests src/lib.rs (target/release/deps/div_euclid-7a4530ca7817d1ef)
running 7 tests
test tests::it_works ... ignored
test tests::bench_aaabs ... bench: 10,498,793 ns/iter (+/- 104,360)
test tests::bench_aadefault ... bench: 11,061,862 ns/iter (+/- 94,107)
test tests::bench_abs ... bench: 10,477,193 ns/iter (+/- 81,942)
test tests::bench_default ... bench: 10,622,983 ns/iter (+/- 25,119)
test tests::bench_zzabs ... bench: 10,481,971 ns/iter (+/- 43,787)
test tests::bench_zzdefault ... bench: 11,074,976 ns/iter (+/- 29,633)
test result: ok. 0 passed; 0 failed; 1 ignored; 6 measured; 0 filtered out; finished in 19.35s
```
It seems that, default `rem_euclid` triggered a branch prediction, thus `bench_default` is faster than `bench_aadefault` and `bench_aadefault`, which shuffles the order of calculations. but all of them slower than what it was in `f64`'s and `f32`'s `rem_euclid`, thus I submit this PR.
bench code:
```rust
#![feature(test)]
extern crate test;
fn rem_euclid(a:i32,rhs:i32)->i32{
let r = a % rhs;
if r < 0 { r + rhs.abs() } else { r }
}
#[cfg(test)]
mod tests {
use super::*;
use test::Bencher;
use rand::prelude::*;
use rand::rngs::SmallRng;
const N:i32=1000;
#[test]
fn it_works() {
let a: i32 = 7; // or any other integer type
let b = 4;
let d:Vec<i32>=(-N..=N).collect();
let n:Vec<i32>=(-N..0).chain(1..=N).collect();
for i in &d {
for j in &n {
assert_eq!(i.rem_euclid(*j),rem_euclid(*i,*j));
}
}
assert_eq!(rem_euclid(a,b), 3);
assert_eq!(rem_euclid(-a,b), 1);
assert_eq!(rem_euclid(a,-b), 3);
assert_eq!(rem_euclid(-a,-b), 1);
}
#[bench]
fn bench_aaabs(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=rem_euclid(*i,*j);
}
}
res
});
}
#[bench]
fn bench_aadefault(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=i.rem_euclid(*j);
}
}
res
});
}
#[bench]
fn bench_abs(b: &mut Bencher) {
let d:Vec<i32>=(-N..=N).collect();
let n:Vec<i32>=(-N..0).chain(1..=N).collect();
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=rem_euclid(*i,*j);
}
}
res
});
}
#[bench]
fn bench_default(b: &mut Bencher) {
let d:Vec<i32>=(-N..=N).collect();
let n:Vec<i32>=(-N..0).chain(1..=N).collect();
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=i.rem_euclid(*j);
}
}
res
});
}
#[bench]
fn bench_zzabs(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=rem_euclid(*i,*j);
}
}
res
});
}
#[bench]
fn bench_zzdefault(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=i.rem_euclid(*j);
}
}
res
});
}
}
```
Add the `#[derive_const]` attribute
Closes#102371. This is a minimal patchset for the attribute to work. There are no restrictions on what traits this attribute applies to.
r? `````@oli-obk`````
Make `Hash`, `Hasher` and `BuildHasher` `#[const_trait]` and make `Sip` const `Hasher`
This PR enables using Hashes in const context.
r? ``@fee1-dead``
This patch allows the usage of the `track_caller` annotation on
generators, as well as sets them conditionally if the parent also has
`track_caller` set.
Also add this annotation on the `GenFuture`'s `poll()` function.
Add support for custom mir
This implements rust-lang/compiler-team#564 . Details about the design, motivation, etc. can be found in there.
r? ```@oli-obk```
Add context to compiler error message
Changed `creates a temporary which is freed while still in use` to `creates a temporary value which is freed while still in use`.
Const Compare for Tuples
Makes the impls for Tuples of ~const `PartialEq` types also `PartialEq`, impls for Tuples of ~const `PartialOrd` types also `PartialOrd`, for Tuples of ~const `Ord` types also `Ord`.
behind the `#![feature(const_cmp)]` gate.
~~Do not merge before #104113 is merged because I want to use this feature to clean up the new test that I added there.~~
r? ``@fee1-dead``
Fix `const_fn_trait_ref_impl`, add test for it
#99943 broke `#[feature(const_fn_trait_ref_impl)]`, this PR fixes this and adds a test for it.
r? ````@fee1-dead````
The type is unsafe and now exposed to the whole crate.
Document it properly and add an unsafe method so the
caller can make it visible that something unsafe is happening.