Coercion casts (`expr as T` where the type of `expr` can be coerced to
`T`) are essentially no-ops, as the actual work is done by a coercion.
Previously a check for type equality was used to avoid emitting the
redundant cast in the MIR, but this failed for coercion casts of
function items that had lifetime parameters. The MIR trans code doesn't
handle `FnPtr -> FnPtr` casts and produced an error.
Also fixes a bug with type ascription expressions not having any
adjustments applied.
Fixes#33295
Primarily affects the MIR construction, which indirectly improves LLVM
IR generation, but some LLVM IR changes have been made too.
* Handle "statement expressions" more intelligently. These are
expressions that always evaluate to `()`. Previously a temporary would
be generated as a destination to translate into, which is unnecessary.
This affects assignment, augmented assignment, `return`, `break` and
`continue`.
* Avoid inserting drops for non-drop types in more places. Scheduled
drops were already skipped for types that we knew wouldn't need
dropping at construction time. However manually-inserted drops like
those for `x` in `x = y;` were still generated. `build_drop` now takes
a type parameter like its `schedule_drop` counterpart and checks to
see if the type needs dropping.
* Avoid generating an extra temporary for an assignment where the types
involved don't need dropping. Previously an expression like
`a = b + 1;` would result in a temporary for `b + 1`. This is so the
RHS can be evaluated, then the LHS evaluated and dropped and have
everything work correctly. However, this isn't necessary if the `LHS`
doesn't need a drop, as we can just overwrite the existing value.
* Improves lvalue analysis to allow treating an `Rvalue::Use` as an
operand in certain conditions. The reason for it never being an
operand is so it can be zeroed/drop-filled, but this is only true for
types that need dropping.
The first two changes result in significantly fewer MIR blocks being
generated, as previously almost every statement would end up generating
a new block due to the drop of the `()` temporary being generated.
Paths are mostly parsed without taking whitespaces into account, e.g. `std :: vec :: Vec :: new ()` parses successfully, however, there are some special cases involving keywords `super`, `self` and `Self`. For example, `self::` is considered a path start only if there are no spaces between `self` and `::`. These restrictions probably made sense when `self` and friends weren't keywords, but now they are unnecessary.
The first two commits remove this special treatment of whitespaces by removing `token::IdentStyle` entirely and therefore fix https://github.com/rust-lang/rust/issues/14109.
This change also affects naked `self` and `super` (which are not tightly followed by `::`, obviously) they can now be parsed as paths, however they are still not resolved correctly in imports (cc @jseyfried, see `compile-fail/use-keyword.rs`), so https://github.com/rust-lang/rust/issues/29036 is not completely fixed.
The third commit also makes `super`, `self`, `Self` and `static` keywords nominally (before this they acted as keywords for all purposes) and removes most of remaining \"special idents\".
The last commit (before tests) contains some small improvements - some qualified paths with type parameters are parsed correctly, `parse_path` is not used for parsing single identifiers, imports are sanity checked for absence of type parameters - such type parameters can be generated by syntax extensions or by macros when https://github.com/rust-lang/rust/issues/10415 is fixed (~~soon!~~already!).
This patch changes some pretty basic things in `libsyntax`, like `token::Token` and the keyword list, so it's a plugin-[breaking-change].
r? @eddyb
MIR: Do not require END_BLOCK to always exist
Basically, all this does, is removing restriction for END_BLOCK to exist past the first invocation of RemoveDeadBlocks pass. This way for functions whose CFG does not reach the `END_BLOCK` end up not containing the block.
As far as the implementation goes, I’m not entirely satisfied with the `BasicBlock::end_block`. I had hoped to make `new` a `const fn` and then just have a `const END_BLOCK` private to mir::build, but it turns out that constant functions don’t yet support conditionals nor a way to assert.
Once upon a time, along with START_BLOCK and END_BLOCK in the castle of important blocks also lived
a RESUME_BLOCK (or was it UNWIND_BLOCK? Either works, I don’t remember anymore). This trinity of
important blocks were required to always exist from the birth to death of the MIR-land they
belonged to.
Some time later, it was discovered that RESUME_BLOCK was just a lazy goon enjoying comfortable life
in the light of fame of the other two. Needless to say, once found out, the RESUME_BLOCK was
quickly slain and disposed of.
Now, the all-seeing eye of ours discovers that END_BLOCK is actually the more evil and better
disguised twin of the slain RESUME_BLOCK. Thus END_BLOCK gets slain and quickly disposed
of. Glory to the START_BLOCK, one and only lord of the important blocks’ castle!
---
Basically, all this does, is removing restriction for END_BLOCK to exist past the first invocation
of RemoveDeadBlocks pass. This way for functions whose CFG does not reach the `END_BLOCK` end up
not containing the block.
As far as the implementation goes, I’m not entirely satisfied with the `BasicBlock::end_block`, I
had hoped to make `new` a `const fn` and then just have a `const END_BLOCK` private to mir::build,
but it turns out that constant functions don’t yet support conditionals nor a way to assert.
Plumb obligations through librustc/infer
Like #32542, but more like #31867.
TODO before merge: make an issue for the propagation of obligations through... uh, everywhere... then replace the `#????`s with the actual issue number.
cc @jroesch
r? @nikomatsakis
rBreak Critical Edges and other MIR work
This PR is built on top of #32080.
This adds the basic depth-first traversals for MIR, preorder, postorder and reverse postorder. The MIR blocks are now translated using reverse postorder. There is also a transform for breaking critical edges, which includes the edges from `invoke`d calls (`Drop` and `Call`), to account for the fact that we can't add code after an `invoke`. It also stops generating the intermediate block (since the transform essentially does it if necessary already).
The kinds of cases this deals with are difficult to produce, so the test is the one I managed to get. However, it seems to bootstrap with `-Z orbit`, which it didn't before my changes.
Also adds a new set of passes to run just before translation that
"prepare" the MIR for codegen. Removal of landing pads, region erasure
and break critical edges are run in this pass.
Also fixes some merge/rebase errors.
This is a fairly standard transform that inserts blocks along critical
edges so code can be inserted along the edge without it affecting other
edges. The main difference is that it considers a Drop or Call
terminator that would require an `invoke` instruction in LLVM a critical
edge. This is because we can't actually insert code after an invoke, so
it ends up looking similar to a critical edge anyway.
The transform is run just before translation right now.
Restrict constants in patterns
This implements [RFC 1445](https://github.com/rust-lang/rfcs/blob/master/text/1445-restrict-constants-in-patterns.md). The primary change is to limit the types of constants used in patterns to those that *derive* `Eq` (note that implementing `Eq` is not sufficient). This has two main effects:
1. Floating point constants are linted, and will eventually be disallowed. This is because floating point constants do not implement `Eq` but only `PartialEq`. This check replaces the existing special case code that aimed to detect the use of `NaN`.
2. Structs and enums must derive `Eq` to be usable within a match.
This is a [breaking-change]: if you encounter a problem, you are most likely using a constant in an expression where the type of the constant is some struct that does not currently implement
`Eq`. Something like the following:
```rust
struct SomeType { ... }
const SOME_CONST: SomeType = ...;
match foo {
SOME_CONST => ...
}
```
The easiest and most future compatible fix is to annotate the type in question with `#[derive(Eq)]` (note that merely *implementing* `Eq` is not enough, it must be *derived*):
```rust
struct SomeType { ... }
const SOME_CONST: SomeType = ...;
match foo {
SOME_CONST => ...
}
```
Another good option is to rewrite the match arm to use an `if` condition (this is also particularly good for floating point types, which implement `PartialEq` but not `Eq`):
```rust
match foo {
c if c == SOME_CONST => ...
}
```
Finally, a third alternative is to tag the type with `#[structural_match]`; but this is not recommended, as the attribute is never expected to be stabilized. Please see RFC #1445 for more details.
cc https://github.com/rust-lang/rust/issues/31434
r? @pnkfelix
This is a [breaking-change]: according to RFC #1445, constants used as
patterns must be of a type that *derives* `Eq`. If you encounter a
problem, you are most likely using a constant in an expression where the
type of the constant is some struct that does not currently implement
`Eq`. Something like the following:
```rust
struct SomeType { ... }
const SOME_CONST: SomeType = ...;
match foo {
SOME_CONST => ...
}
```
The easiest and most future compatible fix is to annotate the type in
question with `#[derive(Eq)]` (note that merely *implementing* `Eq` is
not enough, it must be *derived*):
```rust
struct SomeType { ... }
const SOME_CONST: SomeType = ...;
match foo {
SOME_CONST => ...
}
```
Another good option is to rewrite the match arm to use an `if`
condition (this is also particularly good for floating point types,
which implement `PartialEq` but not `Eq`):
```rust
match foo {
c if c == SOME_CONST => ...
}
```
Finally, a third alternative is to tag the type with
`#[structural_match]`; but this is not recommended, as the attribute is
never expected to be stabilized. Please see RFC #1445 for more details.