Add some standard traversal iterators for MIR

Adds Preorder, Postorder and Reverse Postorder traversal iterators.

Also makes trans/mir use Reverse Postorder traversal for blocks.
This commit is contained in:
James Miller 2016-03-11 13:14:51 +13:00
parent 8f5c3f1fcf
commit 60a28e60aa
4 changed files with 284 additions and 2 deletions

View File

@ -9,6 +9,7 @@
// except according to those terms.
/// A very simple BitVector type.
#[derive(Clone)]
pub struct BitVector {
data: Vec<u64>,
}

View File

@ -40,3 +40,4 @@ mod hair;
pub mod mir_map;
pub mod pretty;
pub mod transform;
pub mod traversal;

View File

@ -0,0 +1,276 @@
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::vec;
use rustc_data_structures::bitvec::BitVector;
use rustc::mir::repr::*;
/// Preorder traversal of a graph.
///
/// Preorder traversal is when each node is visited before an of it's
/// successors
///
/// A
/// / \
/// / \
/// B C
/// \ /
/// \ /
/// D
///
/// A preorder traversal of this graph is either `A B D C` or `A C D B`
#[derive(Clone)]
pub struct Preorder<'a, 'tcx: 'a> {
mir: &'a Mir<'tcx>,
visited: BitVector,
worklist: Vec<BasicBlock>,
}
impl<'a, 'tcx> Preorder<'a, 'tcx> {
pub fn new(mir: &'a Mir<'tcx>, root: BasicBlock) -> Preorder<'a, 'tcx> {
let worklist = vec![root];
Preorder {
mir: mir,
visited: BitVector::new(mir.basic_blocks.len()),
worklist: worklist
}
}
}
pub fn preorder<'a, 'tcx>(mir: &'a Mir<'tcx>) -> Preorder<'a, 'tcx> {
Preorder::new(mir, START_BLOCK)
}
impl<'a, 'tcx> Iterator for Preorder<'a, 'tcx> {
type Item = (BasicBlock, &'a BasicBlockData<'tcx>);
fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> {
while let Some(idx) = self.worklist.pop() {
if !self.visited.insert(idx.index()) {
continue;
}
let data = self.mir.basic_block_data(idx);
if let Some(ref term) = data.terminator {
for &succ in term.successors().iter() {
self.worklist.push(succ);
}
}
return Some((idx, data));
}
None
}
}
/// Postorder traversal of a graph.
///
/// Postorder traversal is when each node is visited after all of it's
/// successors, except when the successor is only reachable by a back-edge
///
/// A
/// / \
/// / \
/// B C
/// \ /
/// \ /
/// D
///
/// A Postorder traversal of this graph is `D B C A` or `D C B A`
pub struct Postorder<'a, 'tcx: 'a> {
mir: &'a Mir<'tcx>,
visited: BitVector,
visit_stack: Vec<(BasicBlock, vec::IntoIter<BasicBlock>)>
}
impl<'a, 'tcx> Postorder<'a, 'tcx> {
pub fn new(mir: &'a Mir<'tcx>, root: BasicBlock) -> Postorder<'a, 'tcx> {
let mut po = Postorder {
mir: mir,
visited: BitVector::new(mir.basic_blocks.len()),
visit_stack: Vec::new()
};
let data = po.mir.basic_block_data(root);
if let Some(ref term) = data.terminator {
po.visited.insert(root.index());
let succs = term.successors().into_owned().into_iter();
po.visit_stack.push((root, succs));
po.traverse_successor();
}
po
}
fn traverse_successor(&mut self) {
// This is quite a complex loop due to 1. the borrow checker not liking it much
// and 2. what exactly is going on is not clear
//
// It does the actual traversal of the graph, while the `next` method on the iterator
// just pops off of the stack. `visit_stack` is a stack containing pairs of nodes and
// iterators over the sucessors of those nodes. Each iteration attempts to get the next
// node from the top of the stack, then pushes that node and an iterator over the
// successors to the top of the stack. This loop only grows `visit_stack`, stopping when
// we reach a child that has no children that we haven't already visited.
//
// For a graph that looks like this:
//
// A
// / \
// / \
// B C
// | |
// | |
// D |
// \ /
// \ /
// E
//
// The state of the stack starts out with just the root node (`A` in this case);
// [(A, [B, C])]
//
// When the first call to `traverse_sucessor` happens, the following happens:
//
// [(B, [D]), // `B` taken from the successors of `A`, pushed to the
// // top of the stack along with the successors of `B`
// (A, [C])]
//
// [(D, [E]), // `D` taken from successors of `B`, pushed to stack
// (B, []),
// (A, [C])]
//
// [(E, []), // `E` taken from successors of `D`, pushed to stack
// (D, []),
// (B, []),
// (A, [C])]
//
// Now that the top of the stack has no successors we can traverse, each item will
// be popped off during iteration until we get back to `A`. This yeilds [E, D, B].
//
// When we yeild `B` and call `traverse_successor`, We push `C` to the stack, but
// since we've already visited `E`, that child isn't added to the stack. The last
// two iterations yield `C` and finally `A` for a final traversal of [E, D, B, C, A]
loop {
let bb = if let Some(&mut (_, ref mut iter)) = self.visit_stack.last_mut() {
if let Some(bb) = iter.next() {
bb
} else {
break;
}
} else {
break;
};
if self.visited.insert(bb.index()) {
let data = self.mir.basic_block_data(bb);
if let Some(ref term) = data.terminator {
let succs = term.successors().into_owned().into_iter();
self.visit_stack.push((bb, succs));
}
}
}
}
}
pub fn postorder<'a, 'tcx>(mir: &'a Mir<'tcx>) -> Postorder<'a, 'tcx> {
Postorder::new(mir, START_BLOCK)
}
impl<'a, 'tcx> Iterator for Postorder<'a, 'tcx> {
type Item = (BasicBlock, &'a BasicBlockData<'tcx>);
fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> {
let next = self.visit_stack.pop();
if next.is_some() {
self.traverse_successor();
}
next.map(|(bb, _)| {
let data = self.mir.basic_block_data(bb);
(bb, data)
})
}
}
/// Reverse postorder traversal of a graph
///
/// Reverse postorder is the reverse order of a postorder traversal.
/// This is different to a preorder traversal and represents a natural
/// linearisation of control-flow.
///
/// A
/// / \
/// / \
/// B C
/// \ /
/// \ /
/// D
///
/// A reverse postorder traversal of this graph is either `A B C D` or `A C B D`
/// Note that for a graph containing no loops (i.e. A DAG), this is equivalent to
/// a topological sort.
///
/// Construction of a `ReversePostorder` traversal requires doing a full
/// postorder traversal of the graph, therefore this traversal should be
/// constructed as few times as possible. Use the `reset` method to be able
/// to re-use the traversal
#[derive(Clone)]
pub struct ReversePostorder<'a, 'tcx: 'a> {
mir: &'a Mir<'tcx>,
blocks: Vec<BasicBlock>,
idx: usize
}
impl<'a, 'tcx> ReversePostorder<'a, 'tcx> {
pub fn new(mir: &'a Mir<'tcx>, root: BasicBlock) -> ReversePostorder<'a, 'tcx> {
let blocks : Vec<_> = Postorder::new(mir, root).map(|(bb, _)| bb).collect();
let len = blocks.len();
ReversePostorder {
mir: mir,
blocks: blocks,
idx: len
}
}
pub fn reset(&mut self) {
self.idx = self.blocks.len();
}
}
pub fn reverse_postorder<'a, 'tcx>(mir: &'a Mir<'tcx>) -> ReversePostorder<'a, 'tcx> {
ReversePostorder::new(mir, START_BLOCK)
}
impl<'a, 'tcx> Iterator for ReversePostorder<'a, 'tcx> {
type Item = (BasicBlock, &'a BasicBlockData<'tcx>);
fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> {
if self.idx == 0 { return None; }
self.idx -= 1;
self.blocks.get(self.idx).map(|&bb| {
let data = self.mir.basic_block_data(bb);
(bb, data)
})
}
}

View File

@ -20,6 +20,9 @@ use std::ops::Deref;
use std::rc::Rc;
use self::lvalue::{LvalueRef, get_dataptr, get_meta};
use rustc_mir::traversal;
use self::lvalue::LvalueRef;
use self::operand::OperandRef;
#[derive(Clone)]
@ -152,8 +155,9 @@ pub fn trans_mir<'blk, 'tcx>(fcx: &'blk FunctionContext<'blk, 'tcx>) {
args: args,
};
// Translate the body of each block
for &bb in &mir_blocks {
let rpo = traversal::reverse_postorder(mir);
// Translate the body of each block using reverse postorder
for (bb, _) in rpo {
mircx.trans_block(bb);
}