Add some standard traversal iterators for MIR
Adds Preorder, Postorder and Reverse Postorder traversal iterators. Also makes trans/mir use Reverse Postorder traversal for blocks.
This commit is contained in:
parent
8f5c3f1fcf
commit
60a28e60aa
@ -9,6 +9,7 @@
|
||||
// except according to those terms.
|
||||
|
||||
/// A very simple BitVector type.
|
||||
#[derive(Clone)]
|
||||
pub struct BitVector {
|
||||
data: Vec<u64>,
|
||||
}
|
||||
|
@ -40,3 +40,4 @@ mod hair;
|
||||
pub mod mir_map;
|
||||
pub mod pretty;
|
||||
pub mod transform;
|
||||
pub mod traversal;
|
||||
|
276
src/librustc_mir/traversal.rs
Normal file
276
src/librustc_mir/traversal.rs
Normal file
@ -0,0 +1,276 @@
|
||||
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
|
||||
// file at the top-level directory of this distribution and at
|
||||
// http://rust-lang.org/COPYRIGHT.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
use std::vec;
|
||||
|
||||
use rustc_data_structures::bitvec::BitVector;
|
||||
|
||||
use rustc::mir::repr::*;
|
||||
|
||||
/// Preorder traversal of a graph.
|
||||
///
|
||||
/// Preorder traversal is when each node is visited before an of it's
|
||||
/// successors
|
||||
///
|
||||
/// A
|
||||
/// / \
|
||||
/// / \
|
||||
/// B C
|
||||
/// \ /
|
||||
/// \ /
|
||||
/// D
|
||||
///
|
||||
/// A preorder traversal of this graph is either `A B D C` or `A C D B`
|
||||
#[derive(Clone)]
|
||||
pub struct Preorder<'a, 'tcx: 'a> {
|
||||
mir: &'a Mir<'tcx>,
|
||||
visited: BitVector,
|
||||
worklist: Vec<BasicBlock>,
|
||||
}
|
||||
|
||||
impl<'a, 'tcx> Preorder<'a, 'tcx> {
|
||||
pub fn new(mir: &'a Mir<'tcx>, root: BasicBlock) -> Preorder<'a, 'tcx> {
|
||||
let worklist = vec![root];
|
||||
|
||||
Preorder {
|
||||
mir: mir,
|
||||
visited: BitVector::new(mir.basic_blocks.len()),
|
||||
worklist: worklist
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn preorder<'a, 'tcx>(mir: &'a Mir<'tcx>) -> Preorder<'a, 'tcx> {
|
||||
Preorder::new(mir, START_BLOCK)
|
||||
}
|
||||
|
||||
impl<'a, 'tcx> Iterator for Preorder<'a, 'tcx> {
|
||||
type Item = (BasicBlock, &'a BasicBlockData<'tcx>);
|
||||
|
||||
fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> {
|
||||
while let Some(idx) = self.worklist.pop() {
|
||||
if !self.visited.insert(idx.index()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
let data = self.mir.basic_block_data(idx);
|
||||
|
||||
if let Some(ref term) = data.terminator {
|
||||
for &succ in term.successors().iter() {
|
||||
self.worklist.push(succ);
|
||||
}
|
||||
}
|
||||
|
||||
return Some((idx, data));
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// Postorder traversal of a graph.
|
||||
///
|
||||
/// Postorder traversal is when each node is visited after all of it's
|
||||
/// successors, except when the successor is only reachable by a back-edge
|
||||
///
|
||||
/// A
|
||||
/// / \
|
||||
/// / \
|
||||
/// B C
|
||||
/// \ /
|
||||
/// \ /
|
||||
/// D
|
||||
///
|
||||
/// A Postorder traversal of this graph is `D B C A` or `D C B A`
|
||||
pub struct Postorder<'a, 'tcx: 'a> {
|
||||
mir: &'a Mir<'tcx>,
|
||||
visited: BitVector,
|
||||
visit_stack: Vec<(BasicBlock, vec::IntoIter<BasicBlock>)>
|
||||
}
|
||||
|
||||
impl<'a, 'tcx> Postorder<'a, 'tcx> {
|
||||
pub fn new(mir: &'a Mir<'tcx>, root: BasicBlock) -> Postorder<'a, 'tcx> {
|
||||
let mut po = Postorder {
|
||||
mir: mir,
|
||||
visited: BitVector::new(mir.basic_blocks.len()),
|
||||
visit_stack: Vec::new()
|
||||
};
|
||||
|
||||
|
||||
let data = po.mir.basic_block_data(root);
|
||||
|
||||
if let Some(ref term) = data.terminator {
|
||||
po.visited.insert(root.index());
|
||||
|
||||
let succs = term.successors().into_owned().into_iter();
|
||||
|
||||
po.visit_stack.push((root, succs));
|
||||
po.traverse_successor();
|
||||
}
|
||||
|
||||
po
|
||||
}
|
||||
|
||||
fn traverse_successor(&mut self) {
|
||||
// This is quite a complex loop due to 1. the borrow checker not liking it much
|
||||
// and 2. what exactly is going on is not clear
|
||||
//
|
||||
// It does the actual traversal of the graph, while the `next` method on the iterator
|
||||
// just pops off of the stack. `visit_stack` is a stack containing pairs of nodes and
|
||||
// iterators over the sucessors of those nodes. Each iteration attempts to get the next
|
||||
// node from the top of the stack, then pushes that node and an iterator over the
|
||||
// successors to the top of the stack. This loop only grows `visit_stack`, stopping when
|
||||
// we reach a child that has no children that we haven't already visited.
|
||||
//
|
||||
// For a graph that looks like this:
|
||||
//
|
||||
// A
|
||||
// / \
|
||||
// / \
|
||||
// B C
|
||||
// | |
|
||||
// | |
|
||||
// D |
|
||||
// \ /
|
||||
// \ /
|
||||
// E
|
||||
//
|
||||
// The state of the stack starts out with just the root node (`A` in this case);
|
||||
// [(A, [B, C])]
|
||||
//
|
||||
// When the first call to `traverse_sucessor` happens, the following happens:
|
||||
//
|
||||
// [(B, [D]), // `B` taken from the successors of `A`, pushed to the
|
||||
// // top of the stack along with the successors of `B`
|
||||
// (A, [C])]
|
||||
//
|
||||
// [(D, [E]), // `D` taken from successors of `B`, pushed to stack
|
||||
// (B, []),
|
||||
// (A, [C])]
|
||||
//
|
||||
// [(E, []), // `E` taken from successors of `D`, pushed to stack
|
||||
// (D, []),
|
||||
// (B, []),
|
||||
// (A, [C])]
|
||||
//
|
||||
// Now that the top of the stack has no successors we can traverse, each item will
|
||||
// be popped off during iteration until we get back to `A`. This yeilds [E, D, B].
|
||||
//
|
||||
// When we yeild `B` and call `traverse_successor`, We push `C` to the stack, but
|
||||
// since we've already visited `E`, that child isn't added to the stack. The last
|
||||
// two iterations yield `C` and finally `A` for a final traversal of [E, D, B, C, A]
|
||||
loop {
|
||||
let bb = if let Some(&mut (_, ref mut iter)) = self.visit_stack.last_mut() {
|
||||
if let Some(bb) = iter.next() {
|
||||
bb
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
};
|
||||
|
||||
if self.visited.insert(bb.index()) {
|
||||
let data = self.mir.basic_block_data(bb);
|
||||
|
||||
if let Some(ref term) = data.terminator {
|
||||
let succs = term.successors().into_owned().into_iter();
|
||||
self.visit_stack.push((bb, succs));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn postorder<'a, 'tcx>(mir: &'a Mir<'tcx>) -> Postorder<'a, 'tcx> {
|
||||
Postorder::new(mir, START_BLOCK)
|
||||
}
|
||||
|
||||
impl<'a, 'tcx> Iterator for Postorder<'a, 'tcx> {
|
||||
type Item = (BasicBlock, &'a BasicBlockData<'tcx>);
|
||||
|
||||
fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> {
|
||||
let next = self.visit_stack.pop();
|
||||
if next.is_some() {
|
||||
self.traverse_successor();
|
||||
}
|
||||
|
||||
next.map(|(bb, _)| {
|
||||
let data = self.mir.basic_block_data(bb);
|
||||
(bb, data)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Reverse postorder traversal of a graph
|
||||
///
|
||||
/// Reverse postorder is the reverse order of a postorder traversal.
|
||||
/// This is different to a preorder traversal and represents a natural
|
||||
/// linearisation of control-flow.
|
||||
///
|
||||
/// A
|
||||
/// / \
|
||||
/// / \
|
||||
/// B C
|
||||
/// \ /
|
||||
/// \ /
|
||||
/// D
|
||||
///
|
||||
/// A reverse postorder traversal of this graph is either `A B C D` or `A C B D`
|
||||
/// Note that for a graph containing no loops (i.e. A DAG), this is equivalent to
|
||||
/// a topological sort.
|
||||
///
|
||||
/// Construction of a `ReversePostorder` traversal requires doing a full
|
||||
/// postorder traversal of the graph, therefore this traversal should be
|
||||
/// constructed as few times as possible. Use the `reset` method to be able
|
||||
/// to re-use the traversal
|
||||
#[derive(Clone)]
|
||||
pub struct ReversePostorder<'a, 'tcx: 'a> {
|
||||
mir: &'a Mir<'tcx>,
|
||||
blocks: Vec<BasicBlock>,
|
||||
idx: usize
|
||||
}
|
||||
|
||||
impl<'a, 'tcx> ReversePostorder<'a, 'tcx> {
|
||||
pub fn new(mir: &'a Mir<'tcx>, root: BasicBlock) -> ReversePostorder<'a, 'tcx> {
|
||||
let blocks : Vec<_> = Postorder::new(mir, root).map(|(bb, _)| bb).collect();
|
||||
|
||||
let len = blocks.len();
|
||||
|
||||
ReversePostorder {
|
||||
mir: mir,
|
||||
blocks: blocks,
|
||||
idx: len
|
||||
}
|
||||
}
|
||||
|
||||
pub fn reset(&mut self) {
|
||||
self.idx = self.blocks.len();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
pub fn reverse_postorder<'a, 'tcx>(mir: &'a Mir<'tcx>) -> ReversePostorder<'a, 'tcx> {
|
||||
ReversePostorder::new(mir, START_BLOCK)
|
||||
}
|
||||
|
||||
impl<'a, 'tcx> Iterator for ReversePostorder<'a, 'tcx> {
|
||||
type Item = (BasicBlock, &'a BasicBlockData<'tcx>);
|
||||
|
||||
fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> {
|
||||
if self.idx == 0 { return None; }
|
||||
self.idx -= 1;
|
||||
|
||||
self.blocks.get(self.idx).map(|&bb| {
|
||||
let data = self.mir.basic_block_data(bb);
|
||||
(bb, data)
|
||||
})
|
||||
}
|
||||
}
|
@ -20,6 +20,9 @@ use std::ops::Deref;
|
||||
use std::rc::Rc;
|
||||
|
||||
use self::lvalue::{LvalueRef, get_dataptr, get_meta};
|
||||
use rustc_mir::traversal;
|
||||
|
||||
use self::lvalue::LvalueRef;
|
||||
use self::operand::OperandRef;
|
||||
|
||||
#[derive(Clone)]
|
||||
@ -152,8 +155,9 @@ pub fn trans_mir<'blk, 'tcx>(fcx: &'blk FunctionContext<'blk, 'tcx>) {
|
||||
args: args,
|
||||
};
|
||||
|
||||
// Translate the body of each block
|
||||
for &bb in &mir_blocks {
|
||||
let rpo = traversal::reverse_postorder(mir);
|
||||
// Translate the body of each block using reverse postorder
|
||||
for (bb, _) in rpo {
|
||||
mircx.trans_block(bb);
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user