Previously, we sorted the vec prior to hashing, making the hash
independent of the original (command-line argument) order. However, the
original vec was still always kept in the original order, so we were
relying on the rest of the compiler always working with it in an
'order-independent' way.
This assumption was not being upheld by the `native_libraries` query -
the order of the entires in its result depends on the order of entries
in `Options.libs`. This lead to an 'unstable fingerprint' ICE when the
`-l` arguments were re-ordered.
This PR removes the sorting logic entirely. Re-ordering command-line
arguments (without adding/removing/changing any arguments) seems like a
really niche use case, and correctly optimizing for it would require
additional work. By always hashing arguments in their original order, we
can entirely avoid a cause of 'unstable fingerprint' errors.
Use TargetTriple::from_path in rustdoc
This fixes the problem reported in https://github.com/Rust-for-Linux/linux/pull/272 where rustdoc requires the absolute path of a target spec json instead of accepting a relative path like rustc.
Currently, if `-Zinstrument-coverage` is enabled, the target is linked
against the `library/profiler_builtins` crate (which pulls in LLVM's
compiler-rt runtime).
This option enables backends to specify an alternative runtime crate for
handling injected instrumentation calls.
Introduce the beginning of a THIR unsafety checker
This poses the foundations for the THIR unsafety checker, so that it can be implemented incrementally:
- implements a rudimentary `Visitor` for the THIR (which will definitely need some tweaking in the future)
- introduces a new `-Zthir-unsafeck` flag which tells the compiler to use THIR unsafeck instead of MIR unsafeck
- implements detection of unsafe functions
- adds revisions to the UI tests to test THIR unsafeck alongside MIR unsafeck
This uses a very simple query design, where bodies are unsafety-checked on a body per body basis. This however has some big flaws:
- the unsafety-checker builds the THIR itself, which means a lot of work is duplicated with MIR building constructing its own copy of the THIR
- unsafety-checking closures is currently completely wrong: closures should take into account the "safety context" in which they are created, here we are considering that closures are always a safe context
I had intended to fix these problems in follow-up PRs since they are always gated under the `-Zthir-unsafeck` flag (which is explicitely noted to be unsound).
r? `@nikomatsakis`
cc https://github.com/rust-lang/project-thir-unsafeck/issues/3https://github.com/rust-lang/project-thir-unsafeck/issues/7
Fix `--remap-path-prefix` not correctly remapping `rust-src` component paths and unify handling of path mapping with virtualized paths
This PR fixes#73167 ("Binaries end up containing path to the rust-src component despite `--remap-path-prefix`") by preventing real local filesystem paths from reaching compilation output if the path is supposed to be remapped.
`RealFileName::Named` introduced in #72767 is now renamed as `LocalPath`, because this variant wraps a (most likely) valid local filesystem path.
`RealFileName::Devirtualized` is renamed as `Remapped` to be used for remapped path from a real path via `--remap-path-prefix` argument, as well as real path inferred from a virtualized (during compiler bootstrapping) `/rustc/...` path. The `local_path` field is now an `Option<PathBuf>`, as it will be set to `None` before serialisation, so it never reaches any build output. Attempting to serialise a non-`None` `local_path` will cause an assertion faliure.
When a path is remapped, a `RealFileName::Remapped` variant is created. The original path is preserved in `local_path` field and the remapped path is saved in `virtual_name` field. Previously, the `local_path` is directly modified which goes against its purpose of "suitable for reading from the file system on the local host".
`rustc_span::SourceFile`'s fields `unmapped_path` (introduced by #44940) and `name_was_remapped` (introduced by #41508 when `--remap-path-prefix` feature originally added) are removed, as these two pieces of information can be inferred from the `name` field: if it's anything other than a `FileName::Real(_)`, or if it is a `FileName::Real(RealFileName::LocalPath(_))`, then clearly `name_was_remapped` would've been false and `unmapped_path` would've been `None`. If it is a `FileName::Real(RealFileName::Remapped{local_path, virtual_name})`, then `name_was_remapped` would've been true and `unmapped_path` would've been `Some(local_path)`.
cc `@eddyb` who implemented `/rustc/...` path devirtualisation
This PR implements span quoting, allowing proc-macros to produce spans
pointing *into their own crate*. This is used by the unstable
`proc_macro::quote!` macro, allowing us to get error messages like this:
```
error[E0412]: cannot find type `MissingType` in this scope
--> $DIR/auxiliary/span-from-proc-macro.rs:37:20
|
LL | pub fn error_from_attribute(_args: TokenStream, _input: TokenStream) -> TokenStream {
| ----------------------------------------------------------------------------------- in this expansion of procedural macro `#[error_from_attribute]`
...
LL | field: MissingType
| ^^^^^^^^^^^ not found in this scope
|
::: $DIR/span-from-proc-macro.rs:8:1
|
LL | #[error_from_attribute]
| ----------------------- in this macro invocation
```
Here, `MissingType` occurs inside the implementation of the proc-macro
`#[error_from_attribute]`. Previosuly, this would always result in a
span pointing at `#[error_from_attribute]`
This will make many proc-macro-related error message much more useful -
when a proc-macro generates code containing an error, users will get an
error message pointing directly at that code (within the macro
definition), instead of always getting a span pointing at the macro
invocation site.
This is implemented as follows:
* When a proc-macro crate is being *compiled*, it causes the `quote!`
macro to get run. This saves all of the sapns in the input to `quote!`
into the metadata of *the proc-macro-crate* (which we are currently
compiling). The `quote!` macro then expands to a call to
`proc_macro::Span::recover_proc_macro_span(id)`, where `id` is an
opaque identifier for the span in the crate metadata.
* When the same proc-macro crate is *run* (e.g. it is loaded from disk
and invoked by some consumer crate), the call to
`proc_macro::Span::recover_proc_macro_span` causes us to load the span
from the proc-macro crate's metadata. The proc-macro then produces a
`TokenStream` containing a `Span` pointing into the proc-macro crate
itself.
The recursive nature of 'quote!' can be difficult to understand at
first. The file `src/test/ui/proc-macro/quote-debug.stdout` shows
the output of the `quote!` macro, which should make this eaier to
understand.
This PR also supports custom quoting spans in custom quote macros (e.g.
the `quote` crate). All span quoting goes through the
`proc_macro::quote_span` method, which can be called by a custom quote
macro to perform span quoting. An example of this usage is provided in
`src/test/ui/proc-macro/auxiliary/custom-quote.rs`
Custom quoting currently has a few limitations:
In order to quote a span, we need to generate a call to
`proc_macro::Span::recover_proc_macro_span`. However, proc-macros
support renaming the `proc_macro` crate, so we can't simply hardcode
this path. Previously, the `quote_span` method used the path
`crate::Span` - however, this only works when it is called by the
builtin `quote!` macro in the same crate. To support being called from
arbitrary crates, we need access to the name of the `proc_macro` crate
to generate a path. This PR adds an additional argument to `quote_span`
to specify the name of the `proc_macro` crate. Howver, this feels kind
of hacky, and we may want to change this before stabilizing anything
quote-related.
Additionally, using `quote_span` currently requires enabling the
`proc_macro_internals` feature. The builtin `quote!` macro
has an `#[allow_internal_unstable]` attribute, but this won't work for
custom quote implementations. This will likely require some additional
tricks to apply `allow_internal_unstable` to the span of
`proc_macro::Span::recover_proc_macro_span`.
Add default search path to `Target::search()`
The function `Target::search()` accepts a target triple and returns a `Target` struct defining the requested target.
There is a `// FIXME 16351: add a sane default search path?` comment that indicates it is desirable to include some sort of default. This was raised in https://github.com/rust-lang/rust/issues/16351 which was closed without any resolution.
https://github.com/rust-lang/rust/pull/31117 was proposed, however that has platform-specific logic that is unsuitable for systems without `/etc/`.
This patch implements the suggestion raised in https://github.com/rust-lang/rust/issues/16351#issuecomment-180878193 where a `target.json` file may be placed in `$(rustc --print sysroot)/lib/rustlib/<target-triple>/target.json`. This allows shipping a toolchain distribution as a single file that gets extracted to the sysroot.
Improve support for NewPM
This adds various missing bits of support for NewPM and allows us to successfully run stage 2 tests with NewPM enabled.
This does not yet enable NewPM by default, as there are still known issue on LLVM 12 (such as a weak fat LTO pipeline). The plan is to make the switch after we update to LLVM 13.
This commit implements both the native linking modifiers infrastructure
as well as an initial attempt at the individual modifiers from the RFC.
It also introduces a feature flag for the general syntax along with
individual feature flags for each modifier.
This is necessary for options that should invalidate the incremental
hash but *not* affect the crate hash (e.g. --remap-path-prefix).
This doesn't add `for_crate_hash` to the trait directly because it's not
relevant for *types*, only for *options*, which are fields on a larger
struct. Instead, it adds a new `SUBSTRUCT` directive for options, which
does take a `for_crate_hash` parameter.
- Use TRACKED_NO_CRATE_HASH for --remap-path-prefix
- Add test that `remap_path_prefix` is tracked
- Reduce duplication in the test suite to avoid future churn
Implement a lint that highlights all moves larger than a configured limit
Tracking issue: #83518
[MCP 420](https://github.com/rust-lang/compiler-team/issues/420) still ~blazing~ in progress
r? ```@pnkfelix```
The main open issue I see with this minimal impl of the feature is that the lint is immediately "stable" (so it can be named on stable), even if it is never executed on stable. I don't think we have the concept of unstable lint names or hiding lint names without an active feature gate, so that would be a bigger change.
Make a few functions private
These were made public in 3105bcfdc1. This
is so long ago I doubt anyone remembers why they're public. No one outside rustc_session uses
them, including in-tree tools.
It doesn't do anything `--unpretty` doesn't, and due to a bug, also
didn't show up in `--help`. I don't think there's any reason to keep it
around, I haven't seen anyone using it.
This PR modifies the macro expansion infrastructure to handle attributes
in a fully token-based manner. As a result:
* Derives macros no longer lose spans when their input is modified
by eager cfg-expansion. This is accomplished by performing eager
cfg-expansion on the token stream that we pass to the derive
proc-macro
* Inner attributes now preserve spans in all cases, including when we
have multiple inner attributes in a row.
This is accomplished through the following changes:
* New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced.
These are very similar to a normal `TokenTree`, but they also track
the position of attributes and attribute targets within the stream.
They are built when we collect tokens during parsing.
An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when
we invoke a macro.
* Token capturing and `LazyTokenStream` are modified to work with
`AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which
is created during the parsing of a nested AST node to make the 'outer'
AST node aware of the attributes and attribute target stored deeper in the token stream.
* When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`),
we tokenize and reparse our target, capturing additional information about the locations of
`#[cfg]` and `#[cfg_attr]` attributes at any depth within the target.
This is a performance optimization, allowing us to perform less work
in the typical case where captured tokens never have eager cfg-expansion run.
This enables us to set more generic labels shared between targets. For
example `target_family="wasm"` across all targets that are conceptually
"wasm".
See https://github.com/rust-lang/reference/pull/1006
The addition of `cfg(wasm)` was an oversight on my end that has a number
of downsides:
* It was introduced as an insta-stable addition, forgoing the usual
staging mechanism we use for potentially far-reaching changes;
* It is a breaking change for people who are using `--cfg wasm` either
directly or via cargo for other purposes;
* It is not entirely clear if a bare `wasm` cfg is a right option or
whether `wasm` family of targets are special enough to warrant
special-casing these targets specifically.
As for the last point, there appears to be a fair amount of support for
reducing the boilerplate in specifying architectures from the same
family, while ignoring their pointer width. The suggested way forward
would be to propose such a change as a separate RFC as it is potentially
a quite contentious addition.
Use FromStr trait for number option parsing
Replace `parse_uint` with generic `parse_number` based on `FromStr`.
Use it for parsing inlining threshold to avoid casting later.
Add an unstable --json=unused-externs flag to print unused externs
This adds an unstable flag to print a list of the extern names not used by cargo.
This PR will enable cargo to collect unused dependencies from all units and provide warnings.
The companion PR to cargo is: https://github.com/rust-lang/cargo/pull/8437
The goal is eventual stabilization of this flag in rustc as well as in cargo.
Discussion of this feature is mostly contained inside these threads: #57274#72342#72603
The feature builds upon the internal datastructures added by #72342
Externs are uniquely identified by name and the information is sufficient for cargo.
If the mode is enabled, rustc will print json messages like:
```
{"unused_extern_names":["byteorder","openssl","webpki"]}
```
For a crate that got passed byteorder, openssl and webpki dependencies but needed none of them.
### Q: Why not pass -Wunused-crate-dependencies?
A: See [ehuss's comment here](https://github.com/rust-lang/rust/issues/57274#issuecomment-624839355)
TLDR: it's cleaner. Rust's warning system wasn't built to be filtered or edited by cargo.
Even a basic implementation of the feature would have to change the "n warnings emitted" line that rustc prints at the end.
Cargo ideally wants to synthesize its own warnings anyways. For example, it would be hard for rustc to emit warnings like
"dependency foo is only used by dev targets", suggesting to make it a dev-dependency instead.
### Q: Make rustc emit used or unused externs?
A: Emitting used externs has the advantage that it simplifies cargo's collection job.
However, emitting unused externs creates less data to be communicated between rustc and cargo.
Often you want to paste a cargo command obtained from `cargo build -vv` for doing something
completely unrelated. The message is emitted always, even if no warning or error is emitted.
At that point, even this tiny difference in "noise" matters. That's why I went with emitting unused externs.
### Q: One json msg per extern or a collective json msg?
A: Same as above, the data format should be concise. Having 30 lines for the 30 crates a crate uses would be disturbing to readers.
Also it helps the cargo implementation to know that there aren't more unused deps coming.
### Q: Why use names of externs instead of e.g. paths?
A: Names are both sufficient as well as neccessary to uniquely identify a passed `--extern` arg.
Names are sufficient because you *must* pass a name when passing an `--extern` arg.
Passing a path is optional on the other hand so rustc might also figure out a crate's location from the file system.
You can also put multiple paths for the same extern name, via e.g. `--extern hello=/usr/lib/hello.rmeta --extern hello=/usr/local/lib/hello.rmeta`,
but rustc will only ever use one of those paths.
Also, paths don't identify a dependency uniquely as it is possible to have multiple different extern names point to the same path.
So paths are ill-suited for identification.
### Q: What about 2015 edition crates?
A: They are fully supported.
Even on the 2015 edition, an explicit `--extern` flag is is required to enable `extern crate foo;` to work (outside of sysroot crates, which this flag doesn't warn about anyways).
So the lint would still fire on 2015 edition crates if you haven't included a dependency specified in Cargo.toml using `extern crate foo;` or similar.
The lint won't fire if your sole use in the crate is through a `extern crate foo;` statement, but that's not its job.
For detecting unused `extern crate foo` statements, there is the `unused_extern_crates` lint
which can be enabled by `#![warn(unused_extern_crates)]` or similar.
cc ```@jsgf``` ```@ehuss``` ```@petrochenkov``` ```@estebank```
This commit adds an additional target property – `supported_sanitizers`,
and replaces the hardcoded allowlists in argument parsing to use this
new property.
Fixes#81802
- Add back various diagnostic methods on `Session`.
It seems unfortunate to duplicate these in so many places, but in the
meantime, making the API inconsistent between `Session` and `Diagnostic`
also seems unfortunate.
- Add back TyCtxtAt methods
These will hopefully be used in the near future.
- Add back `with_const`, it would need to be added soon after anyway.
- Add back `split()` and `get_mut()`, they're useful.
- Add back `HirIdVec`, with a comment that it will soon be used.
- Add back `*_region` functions, with a comment they may soon be used.
- Remove `-Z borrowck_stats` completely. It didn't do anything.
- Remove `make_nop` completely.
- Add back `current_loc`, which is used by an out-of-tree tool.
- Fix style nits
- Remove `AtomicCell` with `cfg(parallel_compiler)` for consistency.
Found with https://github.com/est31/warnalyzer.
Dubious changes:
- Is anyone else using rustc_apfloat? I feel weird completely deleting
x87 support.
- Maybe some of the dead code in rustc_data_structures, in case someone
wants to use it in the future?
- Don't change rustc_serialize
I plan to scrap most of the json module in the near future (see
https://github.com/rust-lang/compiler-team/issues/418) and fixing the
tests needed more work than I expected.
TODO: check if any of the comments on the deleted code should be kept.
Refactor #82270 as lint instead of an error
This PR fixes several issues with #82270 which generated an error when `.intel_syntax` or `.att_syntax` was used in inline assembly:
- It is now a warn-by-default lint instead of an error.
- The lint only triggers on x86. `.intel_syntax` and `.att_syntax` are only valid on x86.
- The lint no longer provides machine-applicable suggestions for two reasons:
- These changes should not be made automatically since changes to assembly code can be very subtle.
- The template string is not always just a string: it can contain macro invocation (`concat!`), raw strings, escape characters, etc.
cc ``@asquared31415``
coverage bug fixes and optimization support
Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to
address multiple, somewhat related issues.
Fixed a significant flaw in prior coverage solution: Every counter
generated a new counter variable, but there should have only been one
counter variable per function. This appears to have bloated .profraw
files significantly. (For a small program, it increased the size by
about 40%. I have not tested large programs, but there is anecdotal
evidence that profraw files were way too large. This is a good fix,
regardless, but hopefully it also addresses related issues.
Fixes: #82144
Invalid LLVM coverage data produced when compiled with -C opt-level=1
Existing tests now work up to at least `opt-level=3`. This required a
detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR
when compiled with coverage, and a lot of trial and error with codegen
adjustments.
The biggest hurdle was figuring out how to continue to support coverage
results for unused functions and generics. Rust's coverage results have
three advantages over Clang's coverage results:
1. Rust's coverage map does not include any overlapping code regions,
making coverage counting unambiguous.
2. Rust generates coverage results (showing zero counts) for all unused
functions, including generics. (Clang does not generate coverage for
uninstantiated template functions.)
3. Rust's unused functions produce minimal stubbed functions in LLVM IR,
sufficient for including in the coverage results; while Clang must
generate the complete LLVM IR for each unused function, even though
it will never be called.
This PR removes the previous hack of attempting to inject coverage into
some other existing function instance, and generates dedicated instances
for each unused function. This change, and a few other adjustments
(similar to what is required for `-C link-dead-code`, but with lower
impact), makes it possible to support LLVM optimizations.
Fixes: #79651
Coverage report: "Unexecuted instantiation:..." for a generic function
from multiple crates
Fixed by removing the aforementioned hack. Some "Unexecuted
instantiation" notices are unavoidable, as explained in the
`used_crate.rs` test, but `-Zinstrument-coverage` has new options to
back off support for either unused generics, or all unused functions,
which avoids the notice, at the cost of less coverage of unused
functions.
Fixes: #82875
Invalid LLVM coverage data produced with crate brotli_decompressor
Fixed by disabling the LLVM function attribute that forces inlining, if
`-Z instrument-coverage` is enabled. This attribute is applied to
Rust functions with `#[inline(always)], and in some cases, the forced
inlining breaks coverage instrumentation and reports.
FYI: `@wesleywiser`
r? `@tmandry`
Allow not emitting `uwtable` on Android
`uwtable` is marked as required on Android, so it can't be disabled via `-C force-unwind-tables=no`. However, I found that the reason it's marked as required was to resolve a [backtrace issue in Gecko](https://github.com/rust-lang/rust/issues/49867), and I haven't find any other reasons that make it required ([yet](https://rust-lang.zulipchat.com/#narrow/stream/122651-general/topic/Unwind.20tables.20are.20strictly.20required.20on.20Windows.20and.20Android)). Therefore, I assume it's safe to turn it off if a (nice) backtrace is not needed, and submit this PR to allow `-C force-unwind-tables=no` when targeting Android.
Note that I haven't tested this change on Android as I don't have an Android environment for testing.
Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to
address multiple, somewhat related issues.
Fixed a significant flaw in prior coverage solution: Every counter
generated a new counter variable, but there should have only been one
counter variable per function. This appears to have bloated .profraw
files significantly. (For a small program, it increased the size by
about 40%. I have not tested large programs, but there is anecdotal
evidence that profraw files were way too large. This is a good fix,
regardless, but hopefully it also addresses related issues.
Fixes: #82144
Invalid LLVM coverage data produced when compiled with -C opt-level=1
Existing tests now work up to at least `opt-level=3`. This required a
detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR
when compiled with coverage, and a lot of trial and error with codegen
adjustments.
The biggest hurdle was figuring out how to continue to support coverage
results for unused functions and generics. Rust's coverage results have
three advantages over Clang's coverage results:
1. Rust's coverage map does not include any overlapping code regions,
making coverage counting unambiguous.
2. Rust generates coverage results (showing zero counts) for all unused
functions, including generics. (Clang does not generate coverage for
uninstantiated template functions.)
3. Rust's unused functions produce minimal stubbed functions in LLVM IR,
sufficient for including in the coverage results; while Clang must
generate the complete LLVM IR for each unused function, even though
it will never be called.
This PR removes the previous hack of attempting to inject coverage into
some other existing function instance, and generates dedicated instances
for each unused function. This change, and a few other adjustments
(similar to what is required for `-C link-dead-code`, but with lower
impact), makes it possible to support LLVM optimizations.
Fixes: #79651
Coverage report: "Unexecuted instantiation:..." for a generic function
from multiple crates
Fixed by removing the aforementioned hack. Some "Unexecuted
instantiation" notices are unavoidable, as explained in the
`used_crate.rs` test, but `-Zinstrument-coverage` has new options to
back off support for either unused generics, or all unused functions,
which avoids the notice, at the cost of less coverage of unused
functions.
Fixes: #82875
Invalid LLVM coverage data produced with crate brotli_decompressor
Fixed by disabling the LLVM function attribute that forces inlining, if
`-Z instrument-coverage` is enabled. This attribute is applied to
Rust functions with `#[inline(always)], and in some cases, the forced
inlining breaks coverage instrumentation and reports.
Make source-based code coverage compatible with MIR inlining
When codegenning code coverage use the instance that coverage data was
originally generated for, to ensure basic level of compatibility with
MIR inlining.
Fixes#83061
Emit error when trying to use assembler syntax directives in `asm!`
The `.intel_syntax` and `.att_syntax` assembler directives should not be used, in favor of not specifying a syntax for intel, and in favor of the explicit `att_syntax` option using the inline assembly options.
Closes#79869
When codegenning code coverage use the instance that coverage data was
originally generated for, to ensure basic level of compatibility with
MIR inlining.
This removes all of the code we had in place to work-around LLVM's
handling of forward progress. From this removal excluded is a workaround
where we'd insert a `sideeffect` into clearly infinite loops such as
`loop {}`. This code remains conditionally effective when the LLVM
version is earlier than 12.0, which fixed the forward progress related
miscompilations at their root.
expand: Refactor module loading
This is an accompanying PR to https://github.com/rust-lang/rust/pull/82399, but they can be landed independently.
See individual commits for more details.
Anyone should be able to review this equally well because all people actually familiar with this code left the project.
Let a portion of DefPathHash uniquely identify the DefPath's crate.
This allows to directly map from a `DefPathHash` to the crate it originates from, without constructing side tables to do that mapping -- something that is useful for incremental compilation where we deal with `DefPathHash` instead of `DefId` a lot.
It also allows to reliably and cheaply check for `DefPathHash` collisions which allows the compiler to gracefully abort compilation instead of running into a subsequent ICE at some random place in the code.
The following new piece of documentation describes the most interesting aspects of the changes:
```rust
/// A `DefPathHash` is a fixed-size representation of a `DefPath` that is
/// stable across crate and compilation session boundaries. It consists of two
/// separate 64-bit hashes. The first uniquely identifies the crate this
/// `DefPathHash` originates from (see [StableCrateId]), and the second
/// uniquely identifies the corresponding `DefPath` within that crate. Together
/// they form a unique identifier within an entire crate graph.
///
/// There is a very small chance of hash collisions, which would mean that two
/// different `DefPath`s map to the same `DefPathHash`. Proceeding compilation
/// with such a hash collision would very probably lead to an ICE and, in the
/// worst case, to a silent mis-compilation. The compiler therefore actively
/// and exhaustively checks for such hash collisions and aborts compilation if
/// it finds one.
///
/// `DefPathHash` uses 64-bit hashes for both the crate-id part and the
/// crate-internal part, even though it is likely that there are many more
/// `LocalDefId`s in a single crate than there are individual crates in a crate
/// graph. Since we use the same number of bits in both cases, the collision
/// probability for the crate-local part will be quite a bit higher (though
/// still very small).
///
/// This imbalance is not by accident: A hash collision in the
/// crate-local part of a `DefPathHash` will be detected and reported while
/// compiling the crate in question. Such a collision does not depend on
/// outside factors and can be easily fixed by the crate maintainer (e.g. by
/// renaming the item in question or by bumping the crate version in a harmless
/// way).
///
/// A collision between crate-id hashes on the other hand is harder to fix
/// because it depends on the set of crates in the entire crate graph of a
/// compilation session. Again, using the same crate with a different version
/// number would fix the issue with a high probability -- but that might be
/// easier said then done if the crates in questions are dependencies of
/// third-party crates.
///
/// That being said, given a high quality hash function, the collision
/// probabilities in question are very small. For example, for a big crate like
/// `rustc_middle` (with ~50000 `LocalDefId`s as of the time of writing) there
/// is a probability of roughly 1 in 14,750,000,000 of a crate-internal
/// collision occurring. For a big crate graph with 1000 crates in it, there is
/// a probability of 1 in 36,890,000,000,000 of a `StableCrateId` collision.
```
Given the probabilities involved I hope that no one will ever actually see the error messages. Nonetheless, I'd be glad about some feedback on how to improve them. Should we create a GH issue describing the problem and possible solutions to point to? Or a page in the rustc book?
r? `@pnkfelix` (feel free to re-assign)
Add option to enable MIR inlining independently of mir-opt-level
Add `-Zinline-mir` option that enables MIR inlining independently of the
current MIR opt level. The primary use-case is enabling MIR inlining on the
default MIR opt level.
Turn inlining thresholds into optional values to make it possible to configure
different defaults depending on the current mir-opt-level (although thresholds
are yet to be used in such a manner).
Cleanup `PpMode` and friends
This PR:
- Separates `PpSourceMode` and `PpHirMode` to remove invalid states
- Renames the variant to remove the redundant `Ppm` prefix
- Adds basic documentation for the different pretty-print modes
- Cleanups some code to make it more idiomatic
Not sure if this is actually useful, but it looks cleaner to me.
Set path of the compile unit to the source directory
As part of the effort to implement split dwarf debug info, we ended up
setting the compile unit location to the output directory rather than
the source directory. Furthermore, it seems like we failed to remap the
prefixes for this as well!
The desired behaviour is to instead set the `DW_AT_GNU_dwo_name` to a
path relative to compiler's working directory. This still allows
debuggers to find the split dwarf files, while not changing the
behaviour of the code that is compiling with regular debug info, and not
changing the compiler's behaviour with regards to reproducibility.
Fixes#82074
cc `@alexcrichton` `@davidtwco`
Make `treat_err_as_bug` Option<NonZeroUsize>
`rustc -Z treat-err-as-bug=N` already requires `N` to be nonzero when the argument is parsed, so changing the type from `Option<usize>` to `Option<NonZeroUsize>` is a low-hanging fruit in terms of layout optimization.
As part of the effort to implement split dwarf debug info, we ended up
setting the compile unit location to the output directory rather than
the source directory. Furthermore, it seems like we failed to remap the
prefixes for this as well!
The desired behaviour is to instead set the `DW_AT_GNU_dwo_name` to a
path relative to compiler's working directory. This still allows
debuggers to find the split dwarf files, while not changing the
behaviour of the code that is compiling with regular debug info, and not
changing the compiler's behaviour with regards to reproducibility.
Fixes#82074
This allows a build system to indicate a location in its own dependency
specification files (eg Cargo's `Cargo.toml`) which can be reported
along side any unused crate dependency.
This supports several types of location:
- 'json' - provide some json-structured data, which is included in the json diagnostics
in a `tool_metadata` field
- 'raw' - emit the provided string into the output. This also appears as a json string in
`tool_metadata`.
If no `--extern-location` is explicitly provided then a default json entry of the form
`"tool_metadata":{"name":<cratename>,"path":<cratepath>}` is emitted.
Fix rustc sysroot in systems using CAS
Change filesearch::get_or_default_sysroot() to check if sysroot is found using env::args().next() if rustc in argv[0] is a symlink; otherwise, or if it is not found, use env::current_exe() to imply sysroot. This makes the rustc binary able to locate Rust libraries in systems using content-addressable storage (CAS).
This allows to directly map from a DefPathHash to the crate it
originates from, without constructing side tables to do that mapping.
It also allows to reliably and cheaply check for DefPathHash collisions.
cfg(version): treat nightlies as complete
This PR makes cfg(version) treat the nightlies
for version 1.n.0 as 1.n.0, even though that nightly
version might not have all stabilizations and features
of the released 1.n.0. This is done for greater
convenience for people who want to test a newly
stabilized feature on nightly, or in other words,
give newly stabilized features as many eyeballs
as possible.
For users who wish to pin nightlies, this commit adds
a -Z assume-incomplete-release option that they can
enable if they run into any issues due to this change.
Implements the suggestion in https://github.com/rust-lang/rust/issues/64796#issuecomment-640851454
This commit makes cfg(version) treat the nightlies
for version 1.n.0 as 1.n.0, even though that nightly
version might not have all stabilizations and features
of the released 1.n.0. This is done for greater
convenience for people who want to test a newly
stabilized feature on nightly.
For users who wish to pin nightlies, this commit adds
a -Z assume-incomplete-release option that they can
enable if there are any issues due to this change.
rustc: Stabilize `-Zrun-dsymutil` as `-Csplit-debuginfo`
This commit adds a new stable codegen option to rustc,
`-Csplit-debuginfo`. The old `-Zrun-dsymutil` flag is deleted and now
subsumed by this stable flag. Additionally `-Zsplit-dwarf` is also
subsumed by this flag but still requires `-Zunstable-options` to
actually activate. The `-Csplit-debuginfo` flag takes one of
three values:
* `off` - This indicates that split-debuginfo from the final artifact is
not desired. This is not supported on Windows and is the default on
Unix platforms except macOS. On macOS this means that `dsymutil` is
not executed.
* `packed` - This means that debuginfo is desired in one location
separate from the main executable. This is the default on Windows
(`*.pdb`) and macOS (`*.dSYM`). On other Unix platforms this subsumes
`-Zsplit-dwarf=single` and produces a `*.dwp` file.
* `unpacked` - This means that debuginfo will be roughly equivalent to
object files, meaning that it's throughout the build directory
rather than in one location (often the fastest for local development).
This is not the default on any platform and is not supported on Windows.
Each target can indicate its own default preference for how debuginfo is
handled. Almost all platforms default to `off` except for Windows and
macOS which default to `packed` for historical reasons.
Some equivalencies for previous unstable flags with the new flags are:
* `-Zrun-dsymutil=yes` -> `-Csplit-debuginfo=packed`
* `-Zrun-dsymutil=no` -> `-Csplit-debuginfo=unpacked`
* `-Zsplit-dwarf=single` -> `-Csplit-debuginfo=packed`
* `-Zsplit-dwarf=split` -> `-Csplit-debuginfo=unpacked`
Note that `-Csplit-debuginfo` still requires `-Zunstable-options` for
non-macOS platforms since split-dwarf support was *just* implemented in
rustc.
There's some more rationale listed on #79361, but the main gist of the
motivation for this commit is that `dsymutil` can take quite a long time
to execute in debug builds and provides little benefit. This means that
incremental compile times appear that much worse on macOS because the
compiler is constantly running `dsymutil` over every single binary it
produces during `cargo build` (even build scripts!). Ideally rustc would
switch to not running `dsymutil` by default, but that's a problem left
to get tackled another day.
Closes#79361
This commit adds a new stable codegen option to rustc,
`-Csplit-debuginfo`. The old `-Zrun-dsymutil` flag is deleted and now
subsumed by this stable flag. Additionally `-Zsplit-dwarf` is also
subsumed by this flag but still requires `-Zunstable-options` to
actually activate. The `-Csplit-debuginfo` flag takes one of
three values:
* `off` - This indicates that split-debuginfo from the final artifact is
not desired. This is not supported on Windows and is the default on
Unix platforms except macOS. On macOS this means that `dsymutil` is
not executed.
* `packed` - This means that debuginfo is desired in one location
separate from the main executable. This is the default on Windows
(`*.pdb`) and macOS (`*.dSYM`). On other Unix platforms this subsumes
`-Zsplit-dwarf=single` and produces a `*.dwp` file.
* `unpacked` - This means that debuginfo will be roughly equivalent to
object files, meaning that it's throughout the build directory
rather than in one location (often the fastest for local development).
This is not the default on any platform and is not supported on Windows.
Each target can indicate its own default preference for how debuginfo is
handled. Almost all platforms default to `off` except for Windows and
macOS which default to `packed` for historical reasons.
Some equivalencies for previous unstable flags with the new flags are:
* `-Zrun-dsymutil=yes` -> `-Csplit-debuginfo=packed`
* `-Zrun-dsymutil=no` -> `-Csplit-debuginfo=unpacked`
* `-Zsplit-dwarf=single` -> `-Csplit-debuginfo=packed`
* `-Zsplit-dwarf=split` -> `-Csplit-debuginfo=unpacked`
Note that `-Csplit-debuginfo` still requires `-Zunstable-options` for
non-macOS platforms since split-dwarf support was *just* implemented in
rustc.
There's some more rationale listed on #79361, but the main gist of the
motivation for this commit is that `dsymutil` can take quite a long time
to execute in debug builds and provides little benefit. This means that
incremental compile times appear that much worse on macOS because the
compiler is constantly running `dsymutil` over every single binary it
produces during `cargo build` (even build scripts!). Ideally rustc would
switch to not running `dsymutil` by default, but that's a problem left
to get tackled another day.
Closes#79361
Change filesearch::get_or_default_sysroot() to check if sysroot is found
using env::args().next() if rustc in argv[0] is a symlink; otherwise, or
if it is not found, use env::current_exe() to imply sysroot. This makes
the rustc binary able to locate Rust libraries in systems using
content-addressable storage (CAS).
Enforce that query results implement Debug
Currently, we require that query keys implement `Debug`, but we do not do the same for query values. This can make incremental compilation bugs difficult to debug - there isn't a good place to print out the result loaded from disk.
This PR adds `Debug` bounds to several query-related functions, allowing us to debug-print the query value when an 'unstable fingerprint' error occurs. This required adding `#[derive(Debug)]` to a fairly large number of types - hopefully, this doesn't have much of an impact on compiler bootstrapping times.
MIR Inline is incompatible with coverage
Fixes: #80060
Fixed by disabling inlining if `-Zinstrument-coverage` is set.
The PR also adds additional use cases to the coverage test for doctests.
r? `@wesleywiser`
cc: `@tmandry`
Enable ASan, TSan, UBSan for aarch64-apple-darwin.
I confirmed ASan, TSan, UBSan all work for me locally with `clang` on my new Macbook Air.
~This requires https://github.com/rust-lang/llvm-project/pull/86~
llvm-dwp concatenates `DW_AT_comp_dir` with `DW_AT_GNU_dwo_name` (only
when `DW_AT_comp_dir` exists), which can result in it failing to find
the DWARF object files.
In earlier testing, `DW_AT_comp_dir` wasn't present in the final
object and the current directory was the output directory.
When running tests through compiletest, the working directory of the
compilation is different from output directory and that resulted in
`DW_AT_comp_dir` being in the object file (and set to the current
working directory, rather than the output directory), and
`DW_AT_GNU_dwo_name` being set to the full path (rather than just
the filename), so llvm-dwp was failing.
This commit changes the compilation directory provided to LLVM to match
the output directory, where DWARF objects are output; and ensures that
only the filename is used for `DW_AT_GNU_dwo_name`.
Signed-off-by: David Wood <david@davidtw.co>
This commit implements Split DWARF support, wiring up the flag (added in
earlier commits) to the modified FFI wrapper (also from earlier
commits).
Signed-off-by: David Wood <david@davidtw.co>
Fixes reported bugs in Rust Coverage
Fixes: #79569Fixes: #79566Fixes: #79565
For the first issue (#79569), I got hit a `debug_assert!()` before
encountering the reported error message (because I have `debug = true`
enabled in my config.toml).
The assertion showed me that some `SwitchInt`s can have more than one
target pointing to the same `BasicBlock`.
I had thought that was invalid, but since it seems to be possible, I'm
allowing this now.
I added a new test for this.
----
In the last two cases above, both tests (intentionally) fail to compile,
but the `InstrumentCoverage` pass is invoked anyway.
The MIR starts with an `Unreachable` `BasicBlock`, which I hadn't
encountered before. (I had assumed the `InstrumentCoverage` pass
would only be invoked with MIRs from successful compilations.)
I don't have test infrastructure set up to test coverage on files that
fail to compile, so I didn't add a new test.
r? `@tmandry`
FYI: `@wesleywiser`
Adds checks for:
* `no_core` attribute
* explicitly-enabled `legacy` symbol mangling
* mir_opt_level > 1 (which enables inlining)
I removed code from the `Inline` MIR pass that forcibly disabled
inlining if `-Zinstrument-coverage` was set. The default `mir_opt_level`
does not enable inlining anyway. But if the level is explicitly set and
is greater than 1, I issue a warning.
The new warnings show up in tests, which is much better for diagnosing
potential option conflicts in these cases.
Fixes multiple issue with counters, with simplification
Includes a change to the implicit else span in ast_lowering, so coverage
of the implicit else no longer spans the `then` block.
Adds coverage for unused closures and async function bodies.
Fixes: #78542
Adding unreachable regions for known MIR missing from coverage map
Cleaned up PR commits, and removed link-dead-code requirement and tests
Coverage no longer depends on Issue #76038 (`-C link-dead-code` is
no longer needed or enforced, so MSVC can use the same tests as
Linux and MacOS now)
Restrict adding unreachable regions to covered files
Improved the code that adds coverage for uncalled functions (with MIR
but not-codegenned) to avoid generating coverage in files not already
included in the files with covered functions.
Resolved last known issue requiring --emit llvm-ir workaround
Fixed bugs in how unreachable code spans were added.
Fix `unknown-crate` when using -Z self-profile with rustdoc
... by removing a duplicate `crate_name` field in `interface::Config`,
making it clear that rustdoc should be passing it to `config::Options` instead.
Unblocks https://github.com/rust-lang/rustc-perf/issues/797.
Warn if `dsymutil` returns an error code
This checks the error code returned by `dsymutil` and warns if it failed. It
also provides the stdout and stderr logs from `dsymutil`, similar to the native
linker step.
I tried to think of ways to test this change, but so far I haven't found a good way, as you'd likely need to inject some nonsensical args into `dsymutil` to induce failure, which feels too artificial to me. Also, https://github.com/rust-lang/rust/issues/79361 suggests Rust is on the verge of disabling `dsymutil` by default, so perhaps it's okay for this change to be untested. In any case, I'm happy to add a test if someone sees a good approach.
Fixes https://github.com/rust-lang/rust/issues/78770
Allow disabling TrapUnreachable via -Ztrap-unreachable=no
Currently this is only possible by defining a custom target, which is quite unwieldy.
This is useful for embedded targets where small code size is desired. For example, on my project (thumbv7em-none-eabi) this yields a 0.6% code size reduction: 132892 bytes -> 132122 bytes (770 bytes down).
This is useful for embedded targets where small code size is desired.
For example, on my project (thumbv7em-none-eabi) this yields a 0.6% code size reduction.
Change `-Z fewer-names` into an optional boolean flag and allow using it
to either discard value names when true or retain them when false,
regardless of other settings.
cleanup: Remove `ParseSess::injected_crate_name`
Its only remaining use is in pretty-printing where the necessary information can be easily re-computed.
Allow making `RUSTC_BOOTSTRAP` conditional on the crate name
Motivation: This came up in the [Zulip stream](https://rust-lang.zulipchat.com/#narrow/stream/233931-t-compiler.2Fmajor-changes/topic/Require.20users.20to.20confirm.20they.20know.20RUSTC_.E2.80.A6.20compiler-team.23350/near/208403962) for https://github.com/rust-lang/compiler-team/issues/350.
See also https://github.com/rust-lang/cargo/pull/6608#issuecomment-458546258; this implements https://github.com/rust-lang/cargo/issues/6627.
The goal is for this to eventually allow prohibiting setting `RUSTC_BOOTSTRAP` in build.rs (https://github.com/rust-lang/cargo/issues/7088).
## User-facing changes
- `RUSTC_BOOTSTRAP=1` still works; there is no current plan to remove this.
- Things like `RUSTC_BOOTSTRAP=0` no longer activate nightly features. In practice this shouldn't be a big deal, since `RUSTC_BOOTSTRAP` is the opposite of stable and everyone uses `RUSTC_BOOTSTRAP=1` anyway.
- `RUSTC_BOOTSTRAP=x` will enable nightly features only for crate `x`.
- `RUSTC_BOOTSTRAP=x,y` will enable nightly features only for crates `x` and `y`.
## Implementation changes
The main change is that `UnstableOptions::from_environment` now requires
an (optional) crate name. If the crate name is unknown (`None`), then the new feature is not available and you still have to use `RUSTC_BOOTSTRAP=1`. In practice this means the feature is only available for `--crate-name`, not for `#![crate_name]`; I'm interested in supporting the second but I'm not sure how.
Other major changes:
- Added `Session::is_nightly_build()`, which uses the `crate_name` of
the session
- Added `nightly_options::match_is_nightly_build`, a convenience method
for looking up `--crate-name` from CLI arguments.
`Session::is_nightly_build()`should be preferred where possible, since
it will take into account `#![crate_name]` (I think).
- Added `unstable_features` to `rustdoc::RenderOptions`
I'm not sure whether this counts as T-compiler or T-lang; _technically_ RUSTC_BOOTSTRAP is an implementation detail, but it's been used so much it seems like this counts as a language change too.
r? `@joshtriplett`
cc `@Mark-Simulacrum` `@hsivonen`
Add flags customizing behaviour of MIR inlining
* `-Zinline-mir-threshold` to change the default threshold.
* `-Zinline-mir-hint-threshold` to change the threshold used by
functions with inline hint.
Having those as configurable flags makes it possible to experiment with with
different inlining thresholds and substantially increase test coverage of MIR
inlining when used with increased thresholds (for example, necessary to test
#78844).
The discussion seems to have resolved that this lint is a bit "noisy" in
that applying it in all places would result in a reduction in
readability.
A few of the trivial functions (like `Path::new`) are fine to leave
outside of closures.
The general rule seems to be that anything that is obviously an
allocation (`Box`, `Vec`, `vec![]`) should be in a closure, even if it
is a 0-sized allocation.
rustc_target: Further cleanup use of target options
Follow up to https://github.com/rust-lang/rust/pull/77729.
Implements items 2 and 4 from the list in https://github.com/rust-lang/rust/pull/77729#issue-500228243.
The first commit collapses uses of `target.options.foo` into `target.foo`.
The second commit renames some target options to avoid tautology:
`target.target_endian` -> `target.endian`
`target.target_c_int_width` -> `target.c_int_width`
`target.target_os` -> `target.os`
`target.target_env` -> `target.env`
`target.target_vendor` -> `target.vendor`
`target.target_family` -> `target.os_family`
`target.target_mcount` -> `target.mcount`
r? `@Mark-Simulacrum`
* `-Zinline-mir-threshold` to change the default threshold.
* `-Zinline-mir-hint-threshold` to change the threshold used by
functions with inline hint.
with an eye on merging `TargetOptions` into `Target`.
`TargetOptions` as a separate structure is mostly an implementation detail of `Target` construction, all its fields logically belong to `Target` and available from `Target` through `Deref` impls.
The main change is that `UnstableOptions::from_environment` now requires
an (optional) crate name. If the crate name is unknown (`None`), then the new feature is not available and you still have to use `RUSTC_BOOTSTRAP=1`. In practice this means the feature is only available for `--crate-name`, not for `#![crate_name]`; I'm interested in supporting the second but I'm not sure how.
Other major changes:
- Added `Session::is_nightly_build()`, which uses the `crate_name` of
the session
- Added `nightly_options::match_is_nightly_build`, a convenience method
for looking up `--crate-name` from CLI arguments.
`Session::is_nightly_build()`should be preferred where possible, since
it will take into account `#![crate_name]` (I think).
- Added `unstable_features` to `rustdoc::RenderOptions`
There is a user-facing change here: things like `RUSTC_BOOTSTRAP=0` no
longer active nightly features. In practice this shouldn't be a big
deal, since `RUSTC_BOOTSTRAP` is the opposite of stable and everyone
uses `RUSTC_BOOTSTRAP=1` anyway.
- Add tests
Check against `Cheat`, not whether nightly features are allowed.
Nightly features are always allowed on the nightly channel.
- Only call `is_nightly_build()` once within a function
- Use booleans consistently for rustc_incremental
Sessions can't be passed through threads, so `read_file` couldn't take a
session. To be consistent, also take a boolean in `write_file_header`.
Add support for SHA256 source file hashing
Adds support for `-Z src-hash-algorithm sha256`, which became available in LLVM 11.
Using an older version of LLVM will cause an error `invalid checksum kind` if the hash algorithm is set to sha256.
r? `@eddyb`
cc #70401 `@est31`
Add option to customize the nll-facts' folder location
This PR adds a `nll-facts-dir` option to specify the location of the directory in which NLL facts are dumped into. It works the same way `dump-mir-dir` controls the location used by the `dump-mir` option.
Implement -Z relax-elf-relocations=yes|no
This lets rustc users tweak whether the linker should relax ELF relocations without recompiling a whole new target with its own libcore etc.
This lets rustc users tweak whether the linker should relax ELF relocations,
namely whether it should emit R_X86_64_GOTPCRELX relocations instead of
R_X86_64_GOTPCREL, as the former is allowed by the ABI to be further
optimised. The default value is whatever the target defines.
Dogfood {exclusive,half-open} ranges in compiler (nfc)
In particular, this allows us to write more explicit matches that
avoid the pitfalls of using a fully general fall-through case, yet
remain fairly ergonomic. Less logic is in guard cases, more is in
the actual exhaustive case analysis.
No functional changes.
In particular, this allows us to write more explicit matches that
avoid the pitfalls of using a fully general fall-through case, yet
remain fairly ergonomic. Less logic is in guard cases, more is in
the actual exhaustive case analysis.
No functional changes.
Implement -Z function-sections=yes|no
This lets rustc users tweak whether all functions should be put in their own TEXT section, using whatever default value the target defines if the flag is missing.
I'm having fun experimenting with musl libc and trying to implement the start symbol in Rust, that means avoiding code that requires relocations, and AFAIK putting everything in its own section makes the toolchain generate `GOTPCREL` relocations for symbols that could use plain old PC-relative addressing (at least on `x86_64`) if they were all in the same section.
The lint checks arguments in calls to `transmute` or functions that have
`Pointer` as a trait bound and displays a warning if the argument is a function
reference. Also checks for `std::fmt::Pointer::fmt` to handle formatting macros
although it doesn't depend on the exact expansion of the macro or formatting
internals. `std::fmt::Pointer` and `std::fmt::Pointer::fmt` were also added as
diagnostic items and symbols.
Working with MIR let's us exclude expressions like `&fn_name as &dyn Something`
and `(&fn_name)()`. Also added ABI, unsafety and whether a function is variadic
in the lint suggestion, included the `&` in the span of the lint and updated the
test.
This lets rustc users tweak whether all functions should be put in their own
TEXT section, using whatever default value the target defines if the flag
is missing.
The wrapper type led to tons of target.target
across the compiler. Its ptr_width field isn't
required any more, as target_pointer_width
is already present in parsed form.
Preparation for a subsequent change that replaces
rustc_target::config::Config with its wrapped Target.
On its own, this commit breaks the build. I don't like making
build-breaking commits, but in this instance I believe that it
makes review easier, as the "real" changes of this PR can be
seen much more easily.
Result of running:
find compiler/ -type f -exec sed -i -e 's/target\.target\([)\.,; ]\)/target\1/g' {} \;
find compiler/ -type f -exec sed -i -e 's/target\.target$/target/g' {} \;
find compiler/ -type f -exec sed -i -e 's/target.ptr_width/target.pointer_width/g' {} \;
./x.py fmt
Rename target_pointer_width to pointer_width because it is already
member of the Target struct.
The compiler supports only three valid values for target_pointer_width:
16, 32, 64. Thus it can safely be turned into an int.
This means less allocations and clones as well as easier handling of the type.
This is a combination of 18 commits.
Commit #2:
Additional examples and some small improvements.
Commit #3:
fixed mir-opt non-mir extensions and spanview title elements
Corrected a fairly recent assumption in runtest.rs that all MIR dump
files end in .mir. (It was appending .mir to the graphviz .dot and
spanview .html file names when generating blessed output files. That
also left outdated files in the baseline alongside the files with the
incorrect names, which I've now removed.)
Updated spanview HTML title elements to match their content, replacing a
hardcoded and incorrect name that was left in accidentally when
originally submitted.
Commit #4:
added more test examples
also improved Makefiles with support for non-zero exit status and to
force validation of tests unless a specific test overrides it with a
specific comment.
Commit #5:
Fixed rare issues after testing on real-world crate
Commit #6:
Addressed PR feedback, and removed temporary -Zexperimental-coverage
-Zinstrument-coverage once again supports the latest capabilities of
LLVM instrprof coverage instrumentation.
Also fixed a bug in spanview.
Commit #7:
Fix closure handling, add tests for closures and inner items
And cleaned up other tests for consistency, and to make it more clear
where spans start/end by breaking up lines.
Commit #8:
renamed "typical" test results "expected"
Now that the `llvm-cov show` tests are improved to normally expect
matching actuals, and to allow individual tests to override that
expectation.
Commit #9:
test coverage of inline generic struct function
Commit #10:
Addressed review feedback
* Removed unnecessary Unreachable filter.
* Replaced a match wildcard with remining variants.
* Added more comments to help clarify the role of successors() in the
CFG traversal
Commit #11:
refactoring based on feedback
* refactored `fn coverage_spans()`.
* changed the way I expand an empty coverage span to improve performance
* fixed a typo that I had accidently left in, in visit.rs
Commit #12:
Optimized use of SourceMap and SourceFile
Commit #13:
Fixed a regression, and synched with upstream
Some generated test file names changed due to some new change upstream.
Commit #14:
Stripping out crate disambiguators from demangled names
These can vary depending on the test platform.
Commit #15:
Ignore llvm-cov show diff on test with generics, expand IO error message
Tests with generics produce llvm-cov show results with demangled names
that can include an unstable "crate disambiguator" (hex value). The
value changes when run in the Rust CI Windows environment. I added a sed
filter to strip them out (in a prior commit), but sed also appears to
fail in the same environment. Until I can figure out a workaround, I'm
just going to ignore this specific test result. I added a FIXME to
follow up later, but it's not that critical.
I also saw an error with Windows GNU, but the IO error did not
specify a path for the directory or file that triggered the error. I
updated the error messages to provide more info for next, time but also
noticed some other tests with similar steps did not fail. Looks
spurious.
Commit #16:
Modify rust-demangler to strip disambiguators by default
Commit #17:
Remove std::process::exit from coverage tests
Due to Issue #77553, programs that call std::process::exit() do not
generate coverage results on Windows MSVC.
Commit #18:
fix: test file paths exceeding Windows max path len
This is not ideal because it means `deny(broken_intra_doc_links)` will
no longer `deny(private_intra_doc_links)`. However, it can't be fixed
with a new lint group, because `broken` is already in the `rustdoc` lint
group; there would need to be a way to nest groups somehow.
This also removes the early `return` so that the link will be generated
even though it gives a warning.
Make graphviz font configurable
Alternative to PR #76776.
To change the graphviz output to use an alternative `fontname` value,
add a command line option like: `rustc --graphviz-font=monospace`.
r? @ecstatic-morse
Alternative to PR ##76776.
To change the graphviz output to use an alternative `fontname` value,
add a command line option like: `rustc --graphviz-font=monospace`.
Warn for #[unstable] on trait impls when it has no effect.
Earlier today I sent a PR with an `#[unstable]` attribute on a trait `impl`, but was informed that this attribute has no effect there. (comment: https://github.com/rust-lang/rust/pull/76525#issuecomment-689678895, issue: https://github.com/rust-lang/rust/issues/55436)
This PR adds a warning for this situation. Trait `impl` blocks with `#[unstable]` where both the type and the trait are stable will result in a warning:
```
warning: An `#[unstable]` annotation here has no effect. See issue #55436 <https://github.com/rust-lang/rust/issues/55436> for more information.
--> library/std/src/panic.rs:235:1
|
235 | #[unstable(feature = "integer_atomics", issue = "32976")]
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```
---
It detects three problems in the existing code:
1. A few `RefUnwindSafe` implementations for the atomic integer types in `library/std/src/panic.rs`. Example:
d92155bf6a/library/std/src/panic.rs (L235-L236)
2. An implementation of `Error` for `LayoutErr` in `library/std/srd/error.rs`:
d92155bf6a/library/std/src/error.rs (L392-L397)
3. `From` implementations for `Waker` and `RawWaker` in `library/alloc/src/task.rs`. Example:
d92155bf6a/library/alloc/src/task.rs (L36-L37)
Case 3 interesting: It has a bound with an `#[unstable]` trait (`W: Wake`), so appears to have much effect on stable code. It does however break similar blanket implementations. It would also have immediate effect if `Wake` was implemented for any stable type. (Which is not the case right now, but there are no warnings in place to prevent it.) Whether this case is a problem or not is not clear to me. If it isn't, adding a simple `c.visit_generics(..);` to this PR will stop the warning for this case.
Add CONST_ITEM_MUTATION lint
Fixes#74053Fixes#55721
This PR adds a new lint `CONST_ITEM_MUTATION`.
Given an item `const FOO: SomeType = ..`, this lint fires on:
* Attempting to write directly to a field (`FOO.field = some_val`) or
array entry (`FOO.array_field[0] = val`)
* Taking a mutable reference to the `const` item (`&mut FOO`), including
through an autoderef `FOO.some_mut_self_method()`
The lint message explains that since each use of a constant creates a
new temporary, the original `const` item will not be modified.
Add `-Z combine_cgu` flag
Introduce a compiler option to let rustc combines all regular CGUs into a single one at the end of compilation.
Part of Issue #64191
Many developers use a dark theme with editors and IDEs, but this
typically doesn't extend to graphviz output.
When I bring up a MIR graphviz document, the white background is
strikingly bright. This new option changes the colors used for graphviz
output to work better in dark-themed UIs.
Add derive macro for specifying diagnostics using attributes.
Introduces `#[derive(SessionDiagnostic)]`, a derive macro for specifying structs that can be converted to Diagnostics using directions given by attributes on the struct and its fields. Currently, the following attributes have been implemented:
- `#[code = "..."]` -- this sets the Diagnostic's error code, and must be provided on the struct iself (ie, not on a field). Equivalent to calling `code`.
- `#[message = "..."]` -- this sets the Diagnostic's primary error message.
- `#[label = "..."]` -- this must be applied to fields of type `Span`, and is equivalent to `span_label`
- `#[suggestion(..)]` -- this allows a suggestion message to be supplied. This attribute must be applied to a field of type `Span` or `(Span, Applicability)`, and is equivalent to calling `span_suggestion`. Valid arguments are:
- `message = "..."` -- this sets the suggestion message.
- (Optional) `code = "..."` -- this suggests code for the suggestion. Defaults to empty.
`suggestion`also comes with other variants: `#[suggestion_short(..)]`, `#[suggestion_hidden(..)]` and `#[suggestion_verbose(..)]` which all take the same keys.
Within the strings passed to each attribute, fields can be referenced without needing to be passed explicitly into the format string -- eg, `#[error = "{ident} already declared"] ` will set the error message to `format!("{} already declared", &self.ident)`. Any fields on the struct can be referenced in this way.
Additionally, for any of these attributes, Option fields can be used to only optionally apply the decoration -- for example:
```rust
#[derive(SessionDiagnostic)]
#[code = "E0123"]
struct SomeKindOfError {
...
#[suggestion(message = "informative error message")]
opt_sugg: Option<(Span, Applicability)>
...
}
```
will not emit a suggestion if `opt_sugg` is `None`.
We plan on iterating on this macro further; this PR is a start.
Closes#61132.
r? `@oli-obk`
Fixes#74053Fixes#55721
This PR adds a new lint `CONST_ITEM_MUTATION`.
Given an item `const FOO: SomeType = ..`, this lint fires on:
* Attempting to write directly to a field (`FOO.field = some_val`) or
array entry (`FOO.array_field[0] = val`)
* Taking a mutable reference to the `const` item (`&mut FOO`), including
through an autoderef `FOO.some_mut_self_method()`
The lint message explains that since each use of a constant creates a
new temporary, the original `const` item will not be modified.
Tools, tests, and experimenting with MIR-derived coverage counters
Leverages the new mir_dump output file in HTML+CSS (from #76074) to visualize coverage code regions
and the MIR features that they came from (including overlapping spans).
See example below.
The `run-make-fulldeps/instrument-coverage` test has been refactored to maximize test coverage and reduce code duplication. The new tests support testing with and without `-Clink-dead-code`, so Rust coverage can be tested on MSVC (which, currently, only works with `link-dead-code` _disabled_).
New tests validate coverage region generation and coverage reports with multiple counters per function. Starting with a simple `if-else` branch tests, coverage tests for each additional syntax type can be added by simply dropping in a new Rust sample program.
Includes a basic, MIR-block-based implementation of coverage injection,
available via `-Zexperimental-coverage`. This implementation has known
flaws and omissions, but is simple enough to validate the new tools and
tests.
The existing `-Zinstrument-coverage` option currently enables
function-level coverage only, which at least appears to generate
accurate coverage reports at that level.
Experimental coverage is not accurate at this time. When branch coverage
works as intended, the `-Zexperimental-coverage` option should be
removed.
This PR replaces the bulk of PR #75828, with the remaining parts of
that PR distributed among other separate and indentpent PRs.
This PR depends on two of those other PRs: #76002, #76003 and #76074
Rust compiler MCP rust-lang/compiler-team#278
Relevant issue: #34701 - Implement support for LLVMs code coverage
instrumentation
![Screen-Recording-2020-08-21-at-2](https://user-images.githubusercontent.com/3827298/90972923-ff417880-e4d1-11ea-92bb-8713c6198f6d.gif)
r? @tmandry
FYI: @wesleywiser
Adds a new mir_dump output file in HTML/CSS to visualize code regions
and the MIR features that they came from (including overlapping spans).
See example below:
Includes a basic, MIR-block-based implementation of coverage injection,
available via `-Zexperimental-coverage`. This implementation has known
flaws and omissions, but is simple enough to validate the new tools and
tests.
The existing `-Zinstrument-coverage` option currently enables
function-level coverage only, which at least appears to generate
accurate coverage reports at that level.
Experimental coverage is not accurate at this time. When branch coverage
works as intended, the `-Zexperimental-coverage` option should be
removed.
This PR replaces the bulk of PR #75828, with the remaining parts of
that PR distributed among other separate and indentpent PRs.
This PR depends on three of those other PRs: #76000, #76002, and
Rust compiler MCP rust-lang/compiler-team#278
Relevant issue: #34701 - Implement support for LLVMs code coverage
instrumentation
![Screen-Recording-2020-08-21-at-2](https://user-images.githubusercontent.com/3827298/90972923-ff417880-e4d1-11ea-92bb-8713c6198f6d.gif)
If a symbol name can only be imported from one place for a type, and
as long as it was not glob-imported anywhere in the current crate, we
can trim its printed path and print only the name.
This has wide implications on error messages with types, for example,
shortening `std::vec::Vec` to just `Vec`, as long as there is no other
`Vec` importable anywhere.
This adds a new '-Z trim-diagnostic-paths=false' option to control this
feature.
On the good path, with no diagnosis printed, we should try to avoid
issuing this query, so we need to prevent trimmed_def_paths query on
several cases.
This change also relies on a previous commit that differentiates
between `Debug` and `Display` on various rustc types, where the latter
is trimmed and presented to the user and the former is not.
The first use case of this detection of regression for trimmed paths
computation, that is in the case of rustc, which should be computed only
in case of errors or warnings.
Our current user of this method is deeply nested, being a side effect
from `Display` formatting on lots of rustc types. So taking only the
caller to the error message is not enough - we should collect the
traceback instead.
Similar to `-Z dump-mir-graphviz`, this adds the option to write
HTML+CSS files that allow users to analyze the spans associated with MIR
elements (by individual statement, just terminator, or overall basic
block).
This PR was split out from PR #76004, and exposes an API for spanview
HTML+CSS files that is also used to analyze code regions chosen for
coverage instrumentation (in a follow-on PR).
Rust compiler MCP rust-lang/compiler-team#278
Relevant issue: #34701 - Implement support for LLVMs code coverage
instrumentation
Fix `-Z instrument-coverage` on MSVC
Found that `-C link-dead-code` (which was enabled automatically
under `-Z instrument-coverage`) was causing the linking error that
resulted in segmentation faults in coverage instrumented binaries. Link
dead code is now disabled under MSVC, allowing `-Z instrument-coverage`
to be enabled under MSVC for the first time.
More details are included in Issue #76038 .
Note this PR makes it possible to support `Z instrument-coverage` but
does not enable instrument coverage for MSVC in existing tests. It will be
enabled in another PR to follow this one (both PRs coming from original
PR #75828).
r? @tmandry
FYI: @wesleywiser
Found that -C link-dead-code (which was enabled automatically
under -Z instrument-coverage) was causing the linking error that
resulted in segmentation faults in coverage instrumented binaries. Link
dead code is now disabled under MSVC, allowing `-Z instrument-coverage`
to be enabled under MSVC for the first time.
More details are included in Issue #76038.
(This PR was broken out from PR #75828)
Fixes#75050
Previously, we would unconditionally suppress the panic hook during
proc-macro execution. This commit adds a new flag
-Z proc-macro-backtrace, which allows running the panic hook for
easier debugging.