Add -Zfuture-incompat-test to assist with testing future-incompat reports.
This adds a `-Zfuture-incompat-test` cli flag to assist with testing future-incompatible reports. This flag causes all lints to be treated as a future-incompatible lint, and will emit a report for them. This is being added so that Cargo's testsuite can reliably test the reporting infrastructure. Right now, Cargo relies on using array_into_iter as a test subject. Since the breaking "future incompatible" lints are never intended to last forever, this means Cargo's testsuite would always need to keep changing to choose different lints (for example, #86330 proposed dropping that moniker for array_into_iter). With this flag, Cargo's tests can trigger any lint and check for the report.
The `large_assignments` lints detects moves over specified limit. The
limit is configured through `move_size_limit = "N"` attribute placed at
the root of a crate. When attribute is absent, the lint is disabled.
Make it possible to enable the lint without making any changes to the
source code, through a new flag `-Zmove-size-limit=N`. For example, to
detect moves exceeding 1023 bytes in a cargo crate, including all
dependencies one could use:
```
$ env RUSTFLAGS=-Zmove-size-limit=1024 cargo build -vv
```
Remove unused dependencies from compiler crates
Various compiler crates have dependencies that they don't appear to use. I used some scripting to detect such dependencies, filtered them based on some manual review, and removed those that do indeed appear to be entirely unused.
This creates a CSV with name "closure_profile_XXXXX.csv", where the
variable part is the process id of the compiler.
To profile a cargo project you can run one of the following depending on
if you're compiling a library or a binary:
```
cargo +stage1 rustc --lib -- -Zprofile-closures
cargo +stage1 rustc --bin -- -Zprofile-closures
```
Allow loading of llvm plugins on nightly
Based on a discussion in #82734 / with `@wsmoses.`
Mainly moves [this](0149bc4e7e) behind a -Z flag, so it can only be used on nightly,
as requested by `@nagisa` in https://github.com/rust-lang/rust/issues/82734#issuecomment-835863940
This change allows loading of llvm plugins like Enzyme.
Right now it also requires a shared library LLVM build of rustc for symbol resolution.
```rust
// test.rs
extern { fn __enzyme_autodiff(_: usize, ...) -> f64; }
fn square(x : f64) -> f64 {
return x * x;
}
fn main() {
unsafe {
println!("Hello, world {} {}!", square(3.0), __enzyme_autodiff(square as usize, 3.0));
}
}
```
```
./rustc test.rs -Z llvm-plugins="./LLVMEnzyme-12.so" -C passes="enzyme"
./test
Hello, world 9 6!
```
I will try to figure out how to simplify the usage and get this into stable in a later iteration,
but having this on nightly will already help testing further steps.
Provide option for specifying the profiler runtime
Currently, if `-Zinstrument-coverage` is enabled, the target is linked
against the `library/profiler_builtins` crate (which pulls in LLVM's
compiler-rt runtime).
This option enables backends to specify an alternative runtime crate for
handling injected instrumentation calls.
Don't use a generator for BoxedResolver
The generator is non-trivial and requires unsafe code anyway. Using regular unsafe code without a generator is much easier to follow.
Based on #85810 as it touches rustc_interface too.
Driver improvements
This PR contains a couple of cleanups for the driver and a few small improvements for the custom codegen backend interface. It also implements `--version` and `-Cpasses=list` support for custom codegen backends.
rustc: Store metadata-in-rlibs in object files
This commit updates how rustc compiler metadata is stored in rlibs.
Previously metadata was stored as a raw file that has the same format as
`--emit metadata`. After this commit, however, the metadata is encoded
into a small object file which has one section which is the contents of
the metadata.
The motivation for this commit is to fix a common case where #83730
arises. The problem is that when rustc crates a `dylib` crate type it
needs to include entire rlib files into the dylib, so it passes
`--whole-archive` (or the equivalent) to the linker. The problem with
this, though, is that the linker will attempt to read all files in the
archive. If the metadata file were left as-is (today) then the linker
would generate an error saying it can't read the file. The previous
solution was to alter the rlib just before linking, creating a new
archive in a temporary directory which has the metadata file removed.
This problem from before this commit is now removed if the metadata file
is stored in an object file that the linker can read. The only caveat we
have to take care of is to ensure that the linker never actually
includes the contents of the object file into the final output. We apply
similar tricks as the `.llvmbc` bytecode sections to do this.
This involved changing the metadata loading code a bit, namely updating
some of the LLVM C APIs used to use non-deprecated ones and fiddling
with the lifetimes a bit to get everything to work out. Otherwise though
this isn't intended to be a functional change really, only that metadata
is stored differently in archives now.
This should end up fixing #83730 because by default dylibs will no
longer have their rlib dependencies "altered" meaning that
split-debuginfo will continue to have valid paths pointing at the
original rlibs. (note that we still "alter" rlibs if LTO is enabled to
remove Rust object files and we also "alter" for the #[link(cfg)]
feature, but that's rarely used).
Closes#83730
This commit updates how rustc compiler metadata is stored in rlibs.
Previously metadata was stored as a raw file that has the same format as
`--emit metadata`. After this commit, however, the metadata is encoded
into a small object file which has one section which is the contents of
the metadata.
The motivation for this commit is to fix a common case where #83730
arises. The problem is that when rustc crates a `dylib` crate type it
needs to include entire rlib files into the dylib, so it passes
`--whole-archive` (or the equivalent) to the linker. The problem with
this, though, is that the linker will attempt to read all files in the
archive. If the metadata file were left as-is (today) then the linker
would generate an error saying it can't read the file. The previous
solution was to alter the rlib just before linking, creating a new
archive in a temporary directory which has the metadata file removed.
This problem from before this commit is now removed if the metadata file
is stored in an object file that the linker can read. The only caveat we
have to take care of is to ensure that the linker never actually
includes the contents of the object file into the final output. We apply
similar tricks as the `.llvmbc` bytecode sections to do this.
This involved changing the metadata loading code a bit, namely updating
some of the LLVM C APIs used to use non-deprecated ones and fiddling
with the lifetimes a bit to get everything to work out. Otherwise though
this isn't intended to be a functional change really, only that metadata
is stored differently in archives now.
This should end up fixing #83730 because by default dylibs will no
longer have their rlib dependencies "altered" meaning that
split-debuginfo will continue to have valid paths pointing at the
original rlibs. (note that we still "alter" rlibs if LTO is enabled to
remove Rust object files and we also "alter" for the #[link(cfg)]
feature, but that's rarely used).
Closes#83730
Remove unused feature gates
The first commit removes a usage of a feature gate, but I don't expect it to be controversial as the feature gate was only used to workaround a limitation of rust in the past. (closures never being `Clone`)
The second commit uses `#[allow_internal_unstable]` to avoid leaking the `trusted_step` feature gate usage from inside the index newtype macro. It didn't work for the `min_specialization` feature gate though.
The third commit removes (almost) all feature gates from the compiler that weren't used anyway.
Reduce the amount of untracked state in TyCtxt
Access to untracked global state may generate instances of #84970.
The GlobalCtxt contains the lowered HIR, the resolver outputs and interners.
By wrapping the resolver inside a query, we make sure those accesses are properly tracked.
As a no_hash query, all dependent queries essentially become `eval_always`,
what they should have been from the beginning.
Don't sort a `Vec` before computing its `DepTrackingHash`
Previously, we sorted the vec prior to hashing, making the hash
independent of the original (command-line argument) order. However, the
original vec was still always kept in the original order, so we were
relying on the rest of the compiler always working with it in an
'order-independent' way.
This assumption was not being upheld by the `native_libraries` query -
the order of the entires in its result depends on the order of entries
in `Options.libs`. This lead to an 'unstable fingerprint' ICE when the
`-l` arguments were re-ordered.
This PR removes the sorting logic entirely. Re-ordering command-line
arguments (without adding/removing/changing any arguments) seems like a
really niche use case, and correctly optimizing for it would require
additional work. By always hashing arguments in their original order, we
can entirely avoid a cause of 'unstable fingerprint' errors.
Previously, we sorted the vec prior to hashing, making the hash
independent of the original (command-line argument) order. However, the
original vec was still always kept in the original order, so we were
relying on the rest of the compiler always working with it in an
'order-independent' way.
This assumption was not being upheld by the `native_libraries` query -
the order of the entires in its result depends on the order of entries
in `Options.libs`. This lead to an 'unstable fingerprint' ICE when the
`-l` arguments were re-ordered.
This PR removes the sorting logic entirely. Re-ordering command-line
arguments (without adding/removing/changing any arguments) seems like a
really niche use case, and correctly optimizing for it would require
additional work. By always hashing arguments in their original order, we
can entirely avoid a cause of 'unstable fingerprint' errors.
Currently, if `-Zinstrument-coverage` is enabled, the target is linked
against the `library/profiler_builtins` crate (which pulls in LLVM's
compiler-rt runtime).
This option enables backends to specify an alternative runtime crate for
handling injected instrumentation calls.
Remove CrateNum parameter for queries that only work on local crate
The pervasive `CrateNum` parameter is a remnant of the multi-crate rustc idea.
Using `()` as query key in those cases avoids having to worry about the validity of the query key.
Introduce the beginning of a THIR unsafety checker
This poses the foundations for the THIR unsafety checker, so that it can be implemented incrementally:
- implements a rudimentary `Visitor` for the THIR (which will definitely need some tweaking in the future)
- introduces a new `-Zthir-unsafeck` flag which tells the compiler to use THIR unsafeck instead of MIR unsafeck
- implements detection of unsafe functions
- adds revisions to the UI tests to test THIR unsafeck alongside MIR unsafeck
This uses a very simple query design, where bodies are unsafety-checked on a body per body basis. This however has some big flaws:
- the unsafety-checker builds the THIR itself, which means a lot of work is duplicated with MIR building constructing its own copy of the THIR
- unsafety-checking closures is currently completely wrong: closures should take into account the "safety context" in which they are created, here we are considering that closures are always a safe context
I had intended to fix these problems in follow-up PRs since they are always gated under the `-Zthir-unsafeck` flag (which is explicitely noted to be unsound).
r? `@nikomatsakis`
cc https://github.com/rust-lang/project-thir-unsafeck/issues/3https://github.com/rust-lang/project-thir-unsafeck/issues/7
Fix `--remap-path-prefix` not correctly remapping `rust-src` component paths and unify handling of path mapping with virtualized paths
This PR fixes#73167 ("Binaries end up containing path to the rust-src component despite `--remap-path-prefix`") by preventing real local filesystem paths from reaching compilation output if the path is supposed to be remapped.
`RealFileName::Named` introduced in #72767 is now renamed as `LocalPath`, because this variant wraps a (most likely) valid local filesystem path.
`RealFileName::Devirtualized` is renamed as `Remapped` to be used for remapped path from a real path via `--remap-path-prefix` argument, as well as real path inferred from a virtualized (during compiler bootstrapping) `/rustc/...` path. The `local_path` field is now an `Option<PathBuf>`, as it will be set to `None` before serialisation, so it never reaches any build output. Attempting to serialise a non-`None` `local_path` will cause an assertion faliure.
When a path is remapped, a `RealFileName::Remapped` variant is created. The original path is preserved in `local_path` field and the remapped path is saved in `virtual_name` field. Previously, the `local_path` is directly modified which goes against its purpose of "suitable for reading from the file system on the local host".
`rustc_span::SourceFile`'s fields `unmapped_path` (introduced by #44940) and `name_was_remapped` (introduced by #41508 when `--remap-path-prefix` feature originally added) are removed, as these two pieces of information can be inferred from the `name` field: if it's anything other than a `FileName::Real(_)`, or if it is a `FileName::Real(RealFileName::LocalPath(_))`, then clearly `name_was_remapped` would've been false and `unmapped_path` would've been `None`. If it is a `FileName::Real(RealFileName::Remapped{local_path, virtual_name})`, then `name_was_remapped` would've been true and `unmapped_path` would've been `Some(local_path)`.
cc `@eddyb` who implemented `/rustc/...` path devirtualisation
This commit implements both the native linking modifiers infrastructure
as well as an initial attempt at the individual modifiers from the RFC.
It also introduces a feature flag for the general syntax along with
individual feature flags for each modifier.
Implement RFC 1260 with feature_name `imported_main`.
This is the second extraction part of #84062 plus additional adjustments.
This (mostly) implements RFC 1260.
However there's still one test case failure in the extern crate case. Maybe `LocalDefId` doesn't work here? I'm not sure.
cc https://github.com/rust-lang/rust/issues/28937
r? `@petrochenkov`
Add TRACKED_NO_CRATE_HASH and use it for `--remap-path-prefix`
I verified locally that this fixes https://github.com/rust-lang/rust/issues/66955.
r? `@Aaron1011` (feel free to reassign)
This is necessary for options that should invalidate the incremental
hash but *not* affect the crate hash (e.g. --remap-path-prefix).
This doesn't add `for_crate_hash` to the trait directly because it's not
relevant for *types*, only for *options*, which are fields on a larger
struct. Instead, it adds a new `SUBSTRUCT` directive for options, which
does take a `for_crate_hash` parameter.
- Use TRACKED_NO_CRATE_HASH for --remap-path-prefix
- Add test that `remap_path_prefix` is tracked
- Reduce duplication in the test suite to avoid future churn
Find codegen backends in more locations
* Search in the sysroot passed using `--sysroot` in addition to the default sysroot.
* Search for `librustc_codegen_$name.so` in addition to `librustc_codegen_$name-$release.so`.
This combined would allow putting `librustc_codegen_cranelift.so` in the right location of a sysroot passed using `--sysroot`.
Add an unstable --json=unused-externs flag to print unused externs
This adds an unstable flag to print a list of the extern names not used by cargo.
This PR will enable cargo to collect unused dependencies from all units and provide warnings.
The companion PR to cargo is: https://github.com/rust-lang/cargo/pull/8437
The goal is eventual stabilization of this flag in rustc as well as in cargo.
Discussion of this feature is mostly contained inside these threads: #57274#72342#72603
The feature builds upon the internal datastructures added by #72342
Externs are uniquely identified by name and the information is sufficient for cargo.
If the mode is enabled, rustc will print json messages like:
```
{"unused_extern_names":["byteorder","openssl","webpki"]}
```
For a crate that got passed byteorder, openssl and webpki dependencies but needed none of them.
### Q: Why not pass -Wunused-crate-dependencies?
A: See [ehuss's comment here](https://github.com/rust-lang/rust/issues/57274#issuecomment-624839355)
TLDR: it's cleaner. Rust's warning system wasn't built to be filtered or edited by cargo.
Even a basic implementation of the feature would have to change the "n warnings emitted" line that rustc prints at the end.
Cargo ideally wants to synthesize its own warnings anyways. For example, it would be hard for rustc to emit warnings like
"dependency foo is only used by dev targets", suggesting to make it a dev-dependency instead.
### Q: Make rustc emit used or unused externs?
A: Emitting used externs has the advantage that it simplifies cargo's collection job.
However, emitting unused externs creates less data to be communicated between rustc and cargo.
Often you want to paste a cargo command obtained from `cargo build -vv` for doing something
completely unrelated. The message is emitted always, even if no warning or error is emitted.
At that point, even this tiny difference in "noise" matters. That's why I went with emitting unused externs.
### Q: One json msg per extern or a collective json msg?
A: Same as above, the data format should be concise. Having 30 lines for the 30 crates a crate uses would be disturbing to readers.
Also it helps the cargo implementation to know that there aren't more unused deps coming.
### Q: Why use names of externs instead of e.g. paths?
A: Names are both sufficient as well as neccessary to uniquely identify a passed `--extern` arg.
Names are sufficient because you *must* pass a name when passing an `--extern` arg.
Passing a path is optional on the other hand so rustc might also figure out a crate's location from the file system.
You can also put multiple paths for the same extern name, via e.g. `--extern hello=/usr/lib/hello.rmeta --extern hello=/usr/local/lib/hello.rmeta`,
but rustc will only ever use one of those paths.
Also, paths don't identify a dependency uniquely as it is possible to have multiple different extern names point to the same path.
So paths are ill-suited for identification.
### Q: What about 2015 edition crates?
A: They are fully supported.
Even on the 2015 edition, an explicit `--extern` flag is is required to enable `extern crate foo;` to work (outside of sysroot crates, which this flag doesn't warn about anyways).
So the lint would still fire on 2015 edition crates if you haven't included a dependency specified in Cargo.toml using `extern crate foo;` or similar.
The lint won't fire if your sole use in the crate is through a `extern crate foo;` statement, but that's not its job.
For detecting unused `extern crate foo` statements, there is the `unused_extern_crates` lint
which can be enabled by `#![warn(unused_extern_crates)]` or similar.
cc ```@jsgf``` ```@ehuss``` ```@petrochenkov``` ```@estebank```
Don't duplicate the extern providers once for each crate
This should give a small perf improvement for small crates by avoiding a memcpy of a pretty big struct for each loaded crate. In addition would be useful for replacing the sequential `CrateNum` everywhere with the hash based `StableCrateId` introduced in #81635, which would allow avoiding remapping of `CrateNum`'s when loading crate metadata. While this PR is not strictly needed for that, it is necessary to prevent a performance loss due to it.
I think this duplication was done in https://github.com/rust-lang/rust/pull/40008 (which introduced the query system) to make it possible to compile multiple crates in a single session in the future. I think this is unlikely to be implemented any time soon. In addition this PR can easily be reverted if necessary to implement this.
- Add back `HirIdVec`, with a comment that it will soon be used.
- Add back `*_region` functions, with a comment they may soon be used.
- Remove `-Z borrowck_stats` completely. It didn't do anything.
- Remove `make_nop` completely.
- Add back `current_loc`, which is used by an out-of-tree tool.
- Fix style nits
- Remove `AtomicCell` with `cfg(parallel_compiler)` for consistency.
coverage bug fixes and optimization support
Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to
address multiple, somewhat related issues.
Fixed a significant flaw in prior coverage solution: Every counter
generated a new counter variable, but there should have only been one
counter variable per function. This appears to have bloated .profraw
files significantly. (For a small program, it increased the size by
about 40%. I have not tested large programs, but there is anecdotal
evidence that profraw files were way too large. This is a good fix,
regardless, but hopefully it also addresses related issues.
Fixes: #82144
Invalid LLVM coverage data produced when compiled with -C opt-level=1
Existing tests now work up to at least `opt-level=3`. This required a
detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR
when compiled with coverage, and a lot of trial and error with codegen
adjustments.
The biggest hurdle was figuring out how to continue to support coverage
results for unused functions and generics. Rust's coverage results have
three advantages over Clang's coverage results:
1. Rust's coverage map does not include any overlapping code regions,
making coverage counting unambiguous.
2. Rust generates coverage results (showing zero counts) for all unused
functions, including generics. (Clang does not generate coverage for
uninstantiated template functions.)
3. Rust's unused functions produce minimal stubbed functions in LLVM IR,
sufficient for including in the coverage results; while Clang must
generate the complete LLVM IR for each unused function, even though
it will never be called.
This PR removes the previous hack of attempting to inject coverage into
some other existing function instance, and generates dedicated instances
for each unused function. This change, and a few other adjustments
(similar to what is required for `-C link-dead-code`, but with lower
impact), makes it possible to support LLVM optimizations.
Fixes: #79651
Coverage report: "Unexecuted instantiation:..." for a generic function
from multiple crates
Fixed by removing the aforementioned hack. Some "Unexecuted
instantiation" notices are unavoidable, as explained in the
`used_crate.rs` test, but `-Zinstrument-coverage` has new options to
back off support for either unused generics, or all unused functions,
which avoids the notice, at the cost of less coverage of unused
functions.
Fixes: #82875
Invalid LLVM coverage data produced with crate brotli_decompressor
Fixed by disabling the LLVM function attribute that forces inlining, if
`-Z instrument-coverage` is enabled. This attribute is applied to
Rust functions with `#[inline(always)], and in some cases, the forced
inlining breaks coverage instrumentation and reports.
FYI: `@wesleywiser`
r? `@tmandry`
Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to
address multiple, somewhat related issues.
Fixed a significant flaw in prior coverage solution: Every counter
generated a new counter variable, but there should have only been one
counter variable per function. This appears to have bloated .profraw
files significantly. (For a small program, it increased the size by
about 40%. I have not tested large programs, but there is anecdotal
evidence that profraw files were way too large. This is a good fix,
regardless, but hopefully it also addresses related issues.
Fixes: #82144
Invalid LLVM coverage data produced when compiled with -C opt-level=1
Existing tests now work up to at least `opt-level=3`. This required a
detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR
when compiled with coverage, and a lot of trial and error with codegen
adjustments.
The biggest hurdle was figuring out how to continue to support coverage
results for unused functions and generics. Rust's coverage results have
three advantages over Clang's coverage results:
1. Rust's coverage map does not include any overlapping code regions,
making coverage counting unambiguous.
2. Rust generates coverage results (showing zero counts) for all unused
functions, including generics. (Clang does not generate coverage for
uninstantiated template functions.)
3. Rust's unused functions produce minimal stubbed functions in LLVM IR,
sufficient for including in the coverage results; while Clang must
generate the complete LLVM IR for each unused function, even though
it will never be called.
This PR removes the previous hack of attempting to inject coverage into
some other existing function instance, and generates dedicated instances
for each unused function. This change, and a few other adjustments
(similar to what is required for `-C link-dead-code`, but with lower
impact), makes it possible to support LLVM optimizations.
Fixes: #79651
Coverage report: "Unexecuted instantiation:..." for a generic function
from multiple crates
Fixed by removing the aforementioned hack. Some "Unexecuted
instantiation" notices are unavoidable, as explained in the
`used_crate.rs` test, but `-Zinstrument-coverage` has new options to
back off support for either unused generics, or all unused functions,
which avoids the notice, at the cost of less coverage of unused
functions.
Fixes: #82875
Invalid LLVM coverage data produced with crate brotli_decompressor
Fixed by disabling the LLVM function attribute that forces inlining, if
`-Z instrument-coverage` is enabled. This attribute is applied to
Rust functions with `#[inline(always)], and in some cases, the forced
inlining breaks coverage instrumentation and reports.
Update to rustc-rayon 0.3.1
This pulls in rust-lang/rustc-rayon#8 to fix#81425. (h/t `@ammaraskar)`
That revealed weak constraints on `rustc_arena::DropArena`, because its
`DropType` was holding type-erased raw pointers to generic `T`. We can
implement `Send` for `DropType` (under `cfg(parallel_compiler)`) by
requiring all `T: Send` before they're type-erased.
This pulls in rust-lang/rustc-rayon#8 to fix#81425. (h/t @ammaraskar)
That revealed weak constraints on `rustc_arena::DropArena`, because its
`DropType` was holding type-erased raw pointers to generic `T`. We can
implement `Send` for `DropType` (under `cfg(parallel_compiler)`) by
requiring all `T: Send` before they're type-erased.
Remove the -Zinsert-sideeffect
This removes all of the code we had in place to work-around LLVM's
handling of forward progress. From this removal excluded is a workaround
where we'd insert a `sideeffect` into clearly infinite loops such as
`loop {}`. This code remains conditionally effective when the LLVM
version is earlier than 12.0, which fixed the forward progress related
miscompilations at their root.
This removes all of the code we had in place to work-around LLVM's
handling of forward progress. From this removal excluded is a workaround
where we'd insert a `sideeffect` into clearly infinite loops such as
`loop {}`. This code remains conditionally effective when the LLVM
version is earlier than 12.0, which fixed the forward progress related
miscompilations at their root.
expand: Refactor module loading
This is an accompanying PR to https://github.com/rust-lang/rust/pull/82399, but they can be landed independently.
See individual commits for more details.
Anyone should be able to review this equally well because all people actually familiar with this code left the project.
bypass auto_da_alloc for metadata files
This saves about 0.7% when rerunning the UI test suite. I.e. when the metadata files exist and will be overwritten. No improvements expected for a clean build. So it might show up in incr-patched perf results.
```
regular rename:
Benchmark #1: touch src/tools/compiletest/src/main.rs ; RUSTC_WRAPPER="" schedtool -B -e ./x.py test src/test/ui
Time (mean ± σ): 47.305 s ± 0.170 s [User: 1631.540 s, System: 412.648 s]
Range (min … max): 47.125 s … 47.856 s 20 runs
non-durable rename:
Benchmark #1: touch src/tools/compiletest/src/main.rs ; RUSTC_WRAPPER="" schedtool -B -e ./x.py test src/test/ui
Time (mean ± σ): 46.930 s ± 0.064 s [User: 1634.344 s, System: 396.038 s]
Range (min … max): 46.759 s … 47.043 s 20 runs
```
There are more places that trigger auto_da_alloc behavior by overwriting existing files with O_TRUNC, but those are much harder to locate because `O_TRUNC` is set on `open()` but the writeback is triggered on `close()`. The latter is the part which shows up in profiles.
Cleanup `PpMode` and friends
This PR:
- Separates `PpSourceMode` and `PpHirMode` to remove invalid states
- Renames the variant to remove the redundant `Ppm` prefix
- Adds basic documentation for the different pretty-print modes
- Cleanups some code to make it more idiomatic
Not sure if this is actually useful, but it looks cleaner to me.
Make `treat_err_as_bug` Option<NonZeroUsize>
`rustc -Z treat-err-as-bug=N` already requires `N` to be nonzero when the argument is parsed, so changing the type from `Option<usize>` to `Option<NonZeroUsize>` is a low-hanging fruit in terms of layout optimization.
* Search in the sysroot passed using `--sysroot` in addition to the
default sysroot.
* Search for `librustc_codegen_$name.so` in addition to
`librustc_codegen_$name-$release.so`.
cfg(version): treat nightlies as complete
This PR makes cfg(version) treat the nightlies
for version 1.n.0 as 1.n.0, even though that nightly
version might not have all stabilizations and features
of the released 1.n.0. This is done for greater
convenience for people who want to test a newly
stabilized feature on nightly, or in other words,
give newly stabilized features as many eyeballs
as possible.
For users who wish to pin nightlies, this commit adds
a -Z assume-incomplete-release option that they can
enable if they run into any issues due to this change.
Implements the suggestion in https://github.com/rust-lang/rust/issues/64796#issuecomment-640851454
This commit makes cfg(version) treat the nightlies
for version 1.n.0 as 1.n.0, even though that nightly
version might not have all stabilizations and features
of the released 1.n.0. This is done for greater
convenience for people who want to test a newly
stabilized feature on nightly.
For users who wish to pin nightlies, this commit adds
a -Z assume-incomplete-release option that they can
enable if there are any issues due to this change.
rustc: Stabilize `-Zrun-dsymutil` as `-Csplit-debuginfo`
This commit adds a new stable codegen option to rustc,
`-Csplit-debuginfo`. The old `-Zrun-dsymutil` flag is deleted and now
subsumed by this stable flag. Additionally `-Zsplit-dwarf` is also
subsumed by this flag but still requires `-Zunstable-options` to
actually activate. The `-Csplit-debuginfo` flag takes one of
three values:
* `off` - This indicates that split-debuginfo from the final artifact is
not desired. This is not supported on Windows and is the default on
Unix platforms except macOS. On macOS this means that `dsymutil` is
not executed.
* `packed` - This means that debuginfo is desired in one location
separate from the main executable. This is the default on Windows
(`*.pdb`) and macOS (`*.dSYM`). On other Unix platforms this subsumes
`-Zsplit-dwarf=single` and produces a `*.dwp` file.
* `unpacked` - This means that debuginfo will be roughly equivalent to
object files, meaning that it's throughout the build directory
rather than in one location (often the fastest for local development).
This is not the default on any platform and is not supported on Windows.
Each target can indicate its own default preference for how debuginfo is
handled. Almost all platforms default to `off` except for Windows and
macOS which default to `packed` for historical reasons.
Some equivalencies for previous unstable flags with the new flags are:
* `-Zrun-dsymutil=yes` -> `-Csplit-debuginfo=packed`
* `-Zrun-dsymutil=no` -> `-Csplit-debuginfo=unpacked`
* `-Zsplit-dwarf=single` -> `-Csplit-debuginfo=packed`
* `-Zsplit-dwarf=split` -> `-Csplit-debuginfo=unpacked`
Note that `-Csplit-debuginfo` still requires `-Zunstable-options` for
non-macOS platforms since split-dwarf support was *just* implemented in
rustc.
There's some more rationale listed on #79361, but the main gist of the
motivation for this commit is that `dsymutil` can take quite a long time
to execute in debug builds and provides little benefit. This means that
incremental compile times appear that much worse on macOS because the
compiler is constantly running `dsymutil` over every single binary it
produces during `cargo build` (even build scripts!). Ideally rustc would
switch to not running `dsymutil` by default, but that's a problem left
to get tackled another day.
Closes#79361
This commit adds a new stable codegen option to rustc,
`-Csplit-debuginfo`. The old `-Zrun-dsymutil` flag is deleted and now
subsumed by this stable flag. Additionally `-Zsplit-dwarf` is also
subsumed by this flag but still requires `-Zunstable-options` to
actually activate. The `-Csplit-debuginfo` flag takes one of
three values:
* `off` - This indicates that split-debuginfo from the final artifact is
not desired. This is not supported on Windows and is the default on
Unix platforms except macOS. On macOS this means that `dsymutil` is
not executed.
* `packed` - This means that debuginfo is desired in one location
separate from the main executable. This is the default on Windows
(`*.pdb`) and macOS (`*.dSYM`). On other Unix platforms this subsumes
`-Zsplit-dwarf=single` and produces a `*.dwp` file.
* `unpacked` - This means that debuginfo will be roughly equivalent to
object files, meaning that it's throughout the build directory
rather than in one location (often the fastest for local development).
This is not the default on any platform and is not supported on Windows.
Each target can indicate its own default preference for how debuginfo is
handled. Almost all platforms default to `off` except for Windows and
macOS which default to `packed` for historical reasons.
Some equivalencies for previous unstable flags with the new flags are:
* `-Zrun-dsymutil=yes` -> `-Csplit-debuginfo=packed`
* `-Zrun-dsymutil=no` -> `-Csplit-debuginfo=unpacked`
* `-Zsplit-dwarf=single` -> `-Csplit-debuginfo=packed`
* `-Zsplit-dwarf=split` -> `-Csplit-debuginfo=unpacked`
Note that `-Csplit-debuginfo` still requires `-Zunstable-options` for
non-macOS platforms since split-dwarf support was *just* implemented in
rustc.
There's some more rationale listed on #79361, but the main gist of the
motivation for this commit is that `dsymutil` can take quite a long time
to execute in debug builds and provides little benefit. This means that
incremental compile times appear that much worse on macOS because the
compiler is constantly running `dsymutil` over every single binary it
produces during `cargo build` (even build scripts!). Ideally rustc would
switch to not running `dsymutil` by default, but that's a problem left
to get tackled another day.
Closes#79361
Make `-Z time-passes` less noisy
- Add the module name to `pre_AST_expansion_passes` and don't make it a
verbose event (since it normally doesn't take very long, and it's
emitted many times)
- Don't make the following rustdoc events verbose; they're emitted many times.
+ build_extern_trait_impl
+ build_local_trait_impl
+ build_primitive_trait_impl
+ get_auto_trait_impls
+ get_blanket_trait_impls
- Remove the `get_auto_trait_and_blanket_synthetic_impls` rustdoc event; it's wholly
covered by get_{auto,blanket}_trait_impls and not very useful.
I found this while working on https://github.com/rust-lang/rust/pull/81275 but it's independent of those changes.
- Add the module name to `pre_AST_expansion_passes` and don't make it a
verbose event (since it normally doesn't take very long, and it's
emitted many times)
- Don't make the following rustdoc events verbose; they're emitted many times.
+ build_extern_trait_impl
+ build_local_trait_impl
+ build_primitive_trait_impl
+ get_auto_trait_impls
+ get_blanket_trait_impls
- Remove `get_auto_trait_and_blanket_synthetic_impls`; it's wholly
covered by get_{auto,blanket}_trait_impls and not very useful.
This avoids each tool having to separately find and call
`self_profile_alloc_strings`.
- Don't compute the global context if it hasn't yet been computed
This avoids giving extraneous errors about unresolved names if an error
occurs during parsing.
Remove much of the special-case handling around crate metadata
dependency tracking by replacing `DepKind::CrateMetadata` and the
pre-allocation of corresponding `DepNodes` with on-demand invocation
of the `crate_hash` query.
resolve: Simplify built-in macro table
We don't use full `SyntaxExtension`s from the table, only `SyntaxExtensionKind`s, and `Ident` in `register_builtin_macro` always had dummy span. This PR removes unnecessary data from the table and related function signatures.
Noticed when reviewing #80850.
Adds checks for:
* `no_core` attribute
* explicitly-enabled `legacy` symbol mangling
* mir_opt_level > 1 (which enables inlining)
I removed code from the `Inline` MIR pass that forcibly disabled
inlining if `-Zinstrument-coverage` was set. The default `mir_opt_level`
does not enable inlining anyway. But if the level is explicitly set and
is greater than 1, I issue a warning.
The new warnings show up in tests, which is much better for diagnosing
potential option conflicts in these cases.
Fix `unknown-crate` when using -Z self-profile with rustdoc
... by removing a duplicate `crate_name` field in `interface::Config`,
making it clear that rustdoc should be passing it to `config::Options` instead.
Unblocks https://github.com/rust-lang/rustc-perf/issues/797.
Implement lazy decoding of DefPathTable during incremental compilation
PR https://github.com/rust-lang/rust/pull/75813 implemented lazy decoding of the `DefPathTable` from crate metadata. However, it requires decoding the entire `DefPathTable` when incremental compilation is active, so that we can map a decoded `DefPathHash` to a `DefId` from an arbitrary crate.
This PR adds support for lazy decoding of dependency `DefPathTable`s when incremental compilation si active.
When we load the incremental cache and dep
graph, we need the ability to map a `DefPathHash` to a `DefId` in the
current compilation session (if the corresponding definition still
exists).
This is accomplished by storing the old `DefId` (that is, the `DefId`
from the previous compilation session) for each `DefPathHash` we need to
remap. Since a `DefPathHash` includes the owning crate, the old crate is
guaranteed to be the right one (if the definition still exists). We then
use the old `DefIndex` as an initial guess, which we validate by
comparing the expected and actual `DefPathHash`es. In most cases,
foreign crates will be completely unchanged, which means that we our
guess will be correct. If our guess is wrong, we fall back to decoding
the entire `DefPathTable` for the foreign crate. This still represents
an improvement over the status quo, since we can skip decoding the
entire `DefPathTable` for other crates (where all of our guesses were
correct).
Properly handle attributes on statements
We now collect tokens for the underlying node wrapped by `StmtKind`
nstead of storing tokens directly in `Stmt`.
`LazyTokenStream` now supports capturing a trailing semicolon after it
is initially constructed. This allows us to avoid refactoring statement
parsing to wrap the parsing of the semicolon in `parse_tokens`.
Attributes on item statements
(e.g. `fn foo() { #[bar] struct MyStruct; }`) are now treated as
item attributes, not statement attributes, which is consistent with how
we handle attributes on other kinds of statements. The feature-gating
code is adjusted so that proc-macro attributes are still allowed on item
statements on stable.
Two built-in macros (`#[global_allocator]` and `#[test]`) needed to be
adjusted to support being passed `Annotatable::Stmt`.
We now collect tokens for the underlying node wrapped by `StmtKind`
instead of storing tokens directly in `Stmt`.
`LazyTokenStream` now supports capturing a trailing semicolon after it
is initially constructed. This allows us to avoid refactoring statement
parsing to wrap the parsing of the semicolon in `parse_tokens`.
Attributes on item statements
(e.g. `fn foo() { #[bar] struct MyStruct; }`) are now treated as
item attributes, not statement attributes, which is consistent with how
we handle attributes on other kinds of statements. The feature-gating
code is adjusted so that proc-macro attributes are still allowed on item
statements on stable.
Two built-in macros (`#[global_allocator]` and `#[test]`) needed to be
adjusted to support being passed `Annotatable::Stmt`.
Always print lints from plugins, if they're available
Currently you can get a list of lints and lint groups by running `rustc
-Whelp`. This prints an additional line at the end:
```
Compiler plugins can provide additional lints and lint groups. To see a listing of these, re-run `rustc -W help` with a crate filename.
```
Clippy is such a "compiler plugin", that provides additional lints.
Running `clippy-driver -Whelp` (`rustc` wrapper) still only prints the
rustc lints with the above message at the end. But when running
`clippy-driver -Whelp main.rs`, where `main.rs` is any rust file, it
also prints Clippy lints. I don't think this is a good approach from a
UX perspective: Why is a random file necessary to print a help message?
This PR changes this behavior: Whenever a compiler callback
registers lints, it is assumed that these lints come from a plugin and
are printed without having to specify a Rust source file.
Fixesrust-lang/rust-clippy#6122
cc `@Manishearth` `@ebroto` for the Clippy changes.
Move lev_distance to rustc_ast, make non-generic
rustc_ast currently has a few dependencies on rustc_lexer. Ideally, an AST
would not have any dependency its lexer, for minimizing
design-time dependencies. Breaking this dependency would also have practical
benefits, since modifying rustc_lexer would not trigger a rebuild of rustc_ast.
This commit does not remove the rustc_ast --> rustc_lexer dependency,
but it does remove one of the sources of this dependency, which is the
code that handles fuzzy matching between symbol names for making suggestions
in diagnostics. Since that code depends only on Symbol, it is easy to move
it to rustc_span. It might even be best to move it to a separate crate,
since other tools such as Cargo use the same algorithm, and have simply
contain a duplicate of the code.
This changes the signature of find_best_match_for_name so that it is no
longer generic over its input. I checked the optimized binaries, and this
function was duplicated for nearly every call site, because most call sites
used short-lived iterator chains, generic over Map and such. But there's
no good reason for a function like this to be generic, since all it does
is immediately convert the generic input (the Iterator impl) to a concrete
Vec<Symbol>. This has all of the costs of generics (duplicated method bodies)
with no benefit.
Changing find_best_match_for_name to be non-generic removed about 10KB of
code from the optimized binary. I know it's a drop in the bucket, but we have
to start reducing binary size, and beginning to tame over-use of generics
is part of that.
Validate use of parameters in naked functions
* Reject use of parameters inside naked function body.
* Reject use of patterns inside function parameters, to emphasize role
of parameters a signature declaration (mirroring existing behaviour
for function declarations) and avoid generating code introducing
specified bindings.
Closes issues below by considering input to be ill-formed.
Closes#75922.
Closes#77848.
Closes#79350.
rustc_ast currently has a few dependencies on rustc_lexer. Ideally, an AST
would not have any dependency its lexer, for minimizing unnecessarily
design-time dependencies. Breaking this dependency would also have practical
benefits, since modifying rustc_lexer would not trigger a rebuild of rustc_ast.
This commit does not remove the rustc_ast --> rustc_lexer dependency,
but it does remove one of the sources of this dependency, which is the
code that handles fuzzy matching between symbol names for making suggestions
in diagnostics. Since that code depends only on Symbol, it is easy to move
it to rustc_span. It might even be best to move it to a separate crate,
since other tools such as Cargo use the same algorithm, and have simply
contain a duplicate of the code.
This changes the signature of find_best_match_for_name so that it is no
longer generic over its input. I checked the optimized binaries, and this
function was duplicated at nearly every call site, because most call sites
used short-lived iterator chains, generic over Map and such. But there's
no good reason for a function like this to be generic, since all it does
is immediately convert the generic input (the Iterator impl) to a concrete
Vec<Symbol>. This has all of the costs of generics (duplicated method bodies)
with no benefit.
Changing find_best_match_for_name to be non-generic removed about 10KB of
code from the optimized binary. I know it's a drop in the bucket, but we have
to start reducing binary size, and beginning to tame over-use of generics
is part of that.
* Reject use of parameters inside naked function body.
* Reject use of patterns inside function parameters, to emphasize role
of parameters a signature declaration (mirroring existing behaviour
for function declarations) and avoid generating code introducing
specified bindings.
Allow disabling TrapUnreachable via -Ztrap-unreachable=no
Currently this is only possible by defining a custom target, which is quite unwieldy.
This is useful for embedded targets where small code size is desired. For example, on my project (thumbv7em-none-eabi) this yields a 0.6% code size reduction: 132892 bytes -> 132122 bytes (770 bytes down).
This is useful for embedded targets where small code size is desired.
For example, on my project (thumbv7em-none-eabi) this yields a 0.6% code size reduction.
Change `-Z fewer-names` into an optional boolean flag and allow using it
to either discard value names when true or retain them when false,
regardless of other settings.
Simplify output capturing
This is a sequence of incremental improvements to the unstable/internal `set_panic` and `set_print` mechanism used by the `test` crate:
1. Remove the `LocalOutput` trait and use `Arc<Mutex<dyn Write>>` instead of `Box<dyn LocalOutput>`. In practice, all implementations of `LocalOutput` were just `Arc<Mutex<..>>`. This simplifies some logic and removes all custom `Sink` implementations such as `library/test/src/helpers/sink.rs`. Also removes a layer of indirection, as the outermost `Box` is now gone. It also means that locking now happens per `write_fmt`, not per individual `write` within. (So `"{} {}\n"` now results in one `lock()`, not four or more.)
2. Since in all cases the `dyn Write`s were just `Vec<u8>`s, replace the type with `Arc<Mutex<Vec<u8>>>`. This simplifies things more, as error handling and flushing can be removed now. This also removes the hack needed in the default panic handler to make this work with `::realstd`, as (unlike `Write`) `Vec<u8>` is from `alloc`, not `std`.
3. Replace the `RefCell`s by regular `Cell`s. The `RefCell`s were mostly used as `mem::replace(&mut *cell.borrow_mut(), something)`, which is just `Cell::replace`. This removes an unecessary bookkeeping and makes the code a bit easier to read.
4. Merge `set_panic` and `set_print` into a single `set_output_capture`. Neither the test crate nor rustc (the only users of this feature) have a use for using these separately. Merging them simplifies things even more. This uses a new function name and feature name, to make it clearer this is internal and not supposed to be used by other crates.
Might be easier to review per commit.
It was only ever used with Vec<u8> anyway. This simplifies some things.
- It no longer needs to be flushed, because that's a no-op anyway for
a Vec<u8>.
- Writing to a Vec<u8> never fails.
- No #[cfg(test)] code is needed anymore to use `realstd` instead of
`std`, because Vec comes from alloc, not std (like Write).
* `-Zinline-mir-threshold` to change the default threshold.
* `-Zinline-mir-hint-threshold` to change the threshold used by
functions with inline hint.
rustc_ast: Do not panic by default when visiting macro calls
Panicking by default made sense when we didn't have HIR or MIR and everything worked on AST, but now all AST visitors run early and majority of them have to deal with macro calls, often by ignoring them.
The second commit renames `visit_mac` to `visit_mac_call`, the corresponding structures were renamed earlier in https://github.com/rust-lang/rust/pull/69589.
Do not remove tokens before AST json serialization
`TokenStripper` is error-prone and introduces one more use of `MutVisitor`.
It's much simpler to treat serialization as just one more place that wants lazy token stream to turn into a real token stream.
Also, no code is better than more code, in general.
r? @Aaron1011
(I also merged tests for `TokenStripper` ICEs into one.)
Implement -Z relax-elf-relocations=yes|no
This lets rustc users tweak whether the linker should relax ELF relocations without recompiling a whole new target with its own libcore etc.
Implement rustc side of report-future-incompat
cc https://github.com/rust-lang/rust/issues/71249
This is an alternative to `@pnkfelix's` initial implementation in https://github.com/pnkfelix/rust/commits/prototype-rustc-side-of-report-future-incompat (mainly because I started working before seeing that branch 😄 ).
My approach outputs the entire original `Diagnostic`, in a way that is compatible with incremental compilation. This is not yet integrated with compiletest, but can be used manually by passing `-Z emit-future-incompat-report` to `rustc`.
Several changes are made to support this feature:
* The `librustc_session/lint` module is moved to a new crate `librustc_lint_defs` (name bikesheddable). This allows accessing lint definitions from `librustc_errors`.
* The `Lint` struct is extended with an `Option<FutureBreakage>`. When present, it indicates that we should display a lint in the future-compat report. `FutureBreakage` contains additional information that we may want to display in the report (currently, a `date` field indicating when the crate will stop compiling).
* A new variant `rustc_error::Level::Allow` is added. This is used when constructing a diagnostic for a future-breakage lint that is marked as allowed (via `#[allow]` or `--cap-lints`). This allows us to capture any future-breakage diagnostics in one place, while still discarding them before they are passed to the `Emitter`.
* `DiagnosticId::Lint` is extended with a `has_future_breakage` field, indicating whether or not the `Lint` has future breakage information (and should therefore show up in the report).
* `Session` is given access to the `LintStore` via a new `SessionLintStore` trait (since `librustc_session` cannot directly reference `LintStore` without a cyclic dependency). We use this to turn a string `DiagnosticId::Lint` back into a `Lint`, to retrieve the `FutureBreakage` data.
Currently, `FutureBreakage.date` is always set to `None`. However, this could potentially be interpreted by Cargo in the future.
I've enabled the future-breakage report for the `ARRAY_INTO_ITER` lint, which can be used to test out this PR. The intent is to use the field to allow Cargo to determine the date of future breakage (as described in [RFC 2834](https://github.com/rust-lang/rfcs/blob/master/text/2834-cargo-report-future-incompat.md)) without needing to parse the diagnostic itself.
cc `@pnkfelix`
This lets rustc users tweak whether the linker should relax ELF relocations,
namely whether it should emit R_X86_64_GOTPCRELX relocations instead of
R_X86_64_GOTPCREL, as the former is allowed by the ABI to be further
optimised. The default value is whatever the target defines.
Implement -Z function-sections=yes|no
This lets rustc users tweak whether all functions should be put in their own TEXT section, using whatever default value the target defines if the flag is missing.
I'm having fun experimenting with musl libc and trying to implement the start symbol in Rust, that means avoiding code that requires relocations, and AFAIK putting everything in its own section makes the toolchain generate `GOTPCREL` relocations for symbols that could use plain old PC-relative addressing (at least on `x86_64`) if they were all in the same section.