rustc_interface: Add a new query `pre_configure`
It partially expands crate attributes before the main expansion pass (without modifying the crate), and the produced preliminary crate attribute list is used for querying a few attributes that are required very early.
Crate-level cfg attributes on the crate itself are then expanded normally during the main expansion pass, like attributes on any other nodes.
This is a continuation of https://github.com/rust-lang/rust/pull/92473 and one more step to very unstable crate-level proc macro attributes maybe actually working.
Previously crate attributes were pre-configured simultaneously with feature extraction, and then written directly into `ast::Crate`.
Rollup of 7 pull requests
Successful merges:
- #108541 (Suppress `opaque_hidden_inferred_bound` for nested RPITs)
- #109137 (resolve: Querify most cstore access methods (subset 2))
- #109380 (add `known-bug` test for unsoundness issue)
- #109462 (Make alias-eq have a relation direction (and rename it to alias-relate))
- #109475 (Simpler checked shifts in MIR building)
- #109504 (Stabilize `arc_into_inner` and `rc_into_inner`.)
- #109506 (make param bound vars visibly bound vars with -Zverbose)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
It partially expands crate attributes before the main expansion pass (without modifying the crate), and the produced preliminary crate attribute list is used for querying a few attributes that are required very early.
Crate-level cfg attributes are then expanded normally during the main expansion pass, like attributes on any other nodes.
Fix cross-compiling with dlltool for raw-dylib
Fix for #103939
Issue Details:
When attempting to cross-compile using the `raw-dylib` feature and the GNU toolchain, rustc would attempt to find a cross-compiling version of dlltool (e.g., `i686-w64-mingw32-dlltool`). The has two issues 1) on Windows dlltool is always `dlltool` (no cross-compiling named versions exist) and 2) it only supported compiling to i686 and x86_64 resulting in ARM 32 and 64 compiling as x86_64.
Fix Details:
* On Windows always use the normal `dlltool` binary.
* Add the ARM64 cross-compiling dlltool name (support for this is coming: https://sourceware.org/bugzilla/show_bug.cgi?id=29964)
* Provide the `-m` argument to dlltool to indicate the target machine type.
(This is the first of two PRs to fix the remaining issues for the `raw-dylib` feature (#58713) that is blocking stabilization (#104218))
make param bound vars visibly bound vars with -Zverbose
I was trying to debug some type/const bound var stuff and it was shockingly tricky due to the fact that even with `-Zverbose` enabled the `T` in `for<T> T: Trait` prints as `T` making it seem like its `TyKind::Param` when it is infact `TyKind::Bound`. This PR "fixes" this when `-Zverbose` is set to allow rendering it as `^T` or `^1_T` depending on binder depth.
r? ```@compiler-errors```
Stabilize `arc_into_inner` and `rc_into_inner`.
Stabilize the `arc_into_inner` and `rc_into_inner` library features and thus close#106894.
The changes in this PR also resolve the FIXMEs for adjusting the documentation upon stabilization, and I’ve additionally included some very minor documentation improvements.
```@rustbot``` label +T-libs-api -T-libs
Simpler checked shifts in MIR building
Doing masking to check unsigned shift amounts is overcomplicated; just comparing the shift directly saves a statement and a temporary, as well as is much easier to read as a human. And shifting by unsigned is the canonical case -- notably, all the library shifting methods (that don't support every type) take shift RHSs as `u32` -- so we might as well make that simpler since it's easy to do so.
This PR also changes *signed* shift amounts to `IntToInt` casts and then uses the same check as for unsigned. The bit-masking is a nice trick, but for example LLVM actually canonicalizes it to an unsigned comparison anyway <https://rust.godbolt.org/z/8h59fMGT4> so I don't think it's worth the effort and the extra `Constant`. (If MIR's `assert` was `assert_nz` then the masking might make sense, but when the `!=` uses another statement I think the comparison is better.)
To review, I suggest looking at 2ee0468c49 first -- that's the interesting code change and has a MIR diff.
My favourite part of the diff:
```diff
- _20 = BitAnd(_19, const 340282366920938463463374607431768211448_u128); // scope 0 at $DIR/shifts.rs:+2:34: +2:44
- _21 = Ne(move _20, const 0_u128); // scope 0 at $DIR/shifts.rs:+2:34: +2:44
- assert(!move _21, "attempt to shift right by `{}`, which would overflow", _19) -> [success: bb3, unwind: bb7]; // scope 0 at $DIR/shifts.rs:+2:34: +2:44
+ _18 = Lt(_17, const 8_u128); // scope 0 at $DIR/shifts.rs:+2:34: +2:44
+ assert(move _18, "attempt to shift right by `{}`, which would overflow", _17) -> [success: bb3, unwind: bb7]; // scope 0 at $DIR/shifts.rs:+2:34: +2:44
```
Make alias-eq have a relation direction (and rename it to alias-relate)
Emitting an "alias-eq" is too strict in some situations, since we don't always want strict equality between a projection and rigid ty. Adds a relation direction.
* I could probably just reuse this [`RelationDir`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/combine/enum.RelationDir.html) -- happy to uplift that struct into middle and use that instead, but I didn't feel compelled to... 🤷
* Some of the matching in `compute_alias_relate_goal` is a bit verbose -- I guess I could simplify it by using [`At::relate`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/at/struct.At.html#method.relate) and mapping the relation-dir to a variance.
* Alternatively, I coulld simplify things by making more helper functions on `EvalCtxt` (e.g. `EvalCtxt::relate_with_direction(T, T)` that also does the nested goal registration). No preference.
r? ```@lcnr``` cc ```@BoxyUwU``` though boxy can claim it if she wants
NOTE: first commit is all the changes, the second is just renaming stuff
Suppress `opaque_hidden_inferred_bound` for nested RPITs
They trigger too much, making repos like linkerd/linkerd2-proxy#2275 sad.
Ideally, at least for RPITs (and probably TAITs?), specifically when we have `impl Trait<Assoc = impl ..>`, that nested opaque should have the necessary `Assoc` item bounds elaborated into its own item bounds. But that's another story.
r? ```@oli-obk```
Make NLL Type Relating Eager
We previously instantiated bound regions in nll type relating lazily. Making this eager is more consistent with how we handle type relating in [`higher_ranked_sub`](0a3b557d52/compiler/rustc_infer/src/infer/higher_ranked/mod.rs (L28)) and should allow us to short circuit in case there's structural equality.
Updates `interpret`, `codegen_ssa`, and `codegen_cranelift` to consume the new cast instead of the intrinsic.
Includes `CastTransmute` for custom MIR building, to be able to test the extra UB.
new solver cleanup + implement coherence
the cleanup:
- change `Certainty::unify_and` to consider ambig + overflow to be ambig
- rename `trait_candidate_should_be_dropped_in_favor_of` to `candidate_should_be_dropped_in_favor_of`
- remove outdated fixme
For coherence I mostly just add an ambiguous candidate if the current trait ref is unknowable. I am doing the same for reservation impl where I also just add an ambiguous candidate.
Use region-erased self type during IAT selection
Split off from #109410 as discussed.
Fixes#109299.
Re UI test: I use a reproducer of #109299 that contains a name resolution error instead of reproducer [`regionck-2.rs`](fc7ed4af16/tests/ui/associated-inherent-types/regionck-2.rs) (as found in the `AliasKind::Inherent` PR) since it would (incorrectly) pass typeck in this PR due to the lack of regionck and I'd rather not make *that* a regression test (with or without `known-bug`).
``@rustbot`` label F-inherent_associated_types
r? ``@compiler-errors``
rustc: Remove unused `Session` argument from some attribute functions
(One auxiliary test file containing one of these functions was unused, so I removed it instead of updating.)
Eagerly intern and check CrateNum/StableCrateId collisions
r? ``@cjgillot``
It seems better to check things ahead of time than checking them afterwards.
The [previous version](https://github.com/rust-lang/rust/pull/108390) was a bit nonsensical, so this addresses the feedback
Do not feed param_env for RPITITs impl side
r? `@compiler-errors`
I don't think this needs more comments or things that we already have but please let me know if you want some comments or something else in this PR.
rustdoc: remove redundant `.content` prefix from span/a colors
Reverts a1d4ebe4961c107272f9764d1908227a3cd04092, as well as fixing the problem it solved with links losing their color.
Ignore the vendor directory for tidy tests.
When running `x.py test` on a downloaded source distribution (e.g. https://static.rust-lang.org/dist/rustc-<version>-src.tar.gz), the crates in the vendor directory contain a number of executable files that cause the tidy test to fail with the following message:
tidy error: binary checked into source: <path>
I see 26 such errors with the 1.68.0 source distribution. A few of these are .rs source files with incorrect executable permission, but most are scripts that are correctly marked executable.
Custom MIR: Allow optional RET type annotation
This currently doesn't compile because the type of `RET` is inferred, which fails if RET is a composite type and fields are initialised separately.
```rust
#![feature(custom_mir, core_intrinsics)]
extern crate core;
use core::intrinsics::mir::*;
#[custom_mir(dialect = "runtime", phase = "optimized")]
fn fn0() -> (i32, bool) {
mir! ({
RET.0 = 0;
RET.1 = true;
Return()
})
}
```
```
error[E0282]: type annotations needed
--> src/lib.rs:8:9
|
8 | RET.0 = 0;
| ^^^ cannot infer type
For more information about this error, try `rustc --explain E0282`.
```
This PR allows the user to manually specify the return type with `type RET = ...;` if required:
```rust
#[custom_mir(dialect = "runtime", phase = "optimized")]
fn fn0() -> (i32, bool) {
mir! (
type RET = (i32, bool);
{
RET.0 = 0;
RET.1 = true;
Return()
}
)
}
```
The syntax is not optimal, I'm happy to see other suggestions. Ideally I wanted it to be a normal type annotation like `let RET: ...;`, but this runs into the multiple parsing options error during macro expansion, as it can be parsed as a normal `let` declaration as well.
r? ```@oli-obk``` or ```@tmiasko``` or ```@JakobDegen```
Set LLVM `LLVM_UNREACHABLE_OPTIMIZE` to `OFF`
This option was added to LLVM in https://reviews.llvm.org/D121750?id=416339. It makes `llvm_unreachable` in builds without assertions compile to an `LLVM_BUILTIN_TRAP` instead of `LLVM_BUILTIN_UNREACHABLE` (which causes undefined behavior and is equivalent to `std::hint::unreachable_unchecked`).
Having compiler bugs triggering undefined behavior generally seems undesirable and inconsistent with Rust's goals. There is a check in `src/tools/tidy/src/style.rs` to reject code using `llvm_unreachable`. But it is used a lot within LLVM itself.
For instance, this changes a failure I get compiling `libcore` for m68k from a `SIGSEGV` to `SIGILL`, which seems better though it still doesn't provide a useful message without switching to an LLVM build with asserts.
It may be best not to do this if it noticeably degrades compiler performance, but worthwhile if it doesn't do so in any significant way. I haven't looked into what benchmarks there are for Rustc. That should be considered before merging.
Detect uninhabited types early in const eval
r? `@RalfJung`
implements https://github.com/rust-lang/rust/pull/108442#discussion_r1143003840
this is a breaking change, as some UB during const eval is now detected instead of silently being ignored. Users can see this and other UB that may cause future breakage with `-Zextra-const-ub-checks` or just by running miri on their code, which sets that flag by default.