This is more progress towards #9128 and all its related tree of issues. This implements a new `BasicLoop` on top of pthreads synchronization primitives (wrapped in `LittleLock`). This also removes the wonky `callback_ms` function from the interface of the event loop.
After #9901 is taking forever to land, I'm going to try to do all this runtime work in much smaller chunks than before. Right now this will not work unless #9901 lands first, but I'm close to landing it (hopefully), and I wanted to go ahead and get this reviewed before throwing it at bors later on down the road.
This "pausible idle callback" is also a bit of a weird idea, but it wasn't as difficult to implement as callback_ms so I'm more semi-ok with it.
It's not guaranteed that there will always be an event loop to run, and this
implementation will serve as an incredibly basic one which does not provide any
I/O, but allows the scheduler to still run.
cc #9128
This is a peculiar function to require event loops to implement, and it's only
used in one spot during tests right now. Instead, a possibly more robust apis
for timers should be used rather than requiring all event loops to implement a
curious-looking function.
The PausibleIdleCallback must have some handle into the event loop, and because
struct destructors are run in order of top-to-bottom in order of fields, this
meant that the event loop was getting destroyed before the idle callback was
getting destroyed.
I can't confirm that this fixes a problem in how we use libuv, but it does
semantically fix a problem for usage with other event loops.
Large topics:
* Implemented `rt::io::net::unix`. We've got an implementation backed by "named pipes" for windows for free from libuv, so I'm not sure if these should be `cfg(unix)` or whether they'd be better placed in `rt::io::pipe` (which is currently kinda useless), or to leave in `unix`. Regardless, we probably shouldn't deny windows of functionality which it certainly has.
* Fully implemented `net::addrinfo`, or at least fully implemented in the sense of making the best attempt to wrap libuv's `getaddrinfo` api
* Moved standard I/O to a libuv TTY instead of just a plain old file descriptor. I found that this interacted better when closing stdin, and it has the added bonus of getting things like terminal dimentions (someone should make a progress bar now!)
* Migrate to `~Trait` instead of a typedef'd object where possible. There are only two more types which are blocked on this, and those are traits which have a method which takes by-value self (there's an open issue on this)
* Drop `rt::io::support::PathLike` in favor of just `ToCStr`. We recently had a lot of Path work done, but it still wasn't getting passed down to libuv (there was an intermediate string conversion), and this allows true paths to work all the way down to libuv (and anything else that can become a C string).
* Removes `extra::fileinput` and `extra::io_util`
Closes#9895Closes#9975Closes#8330Closes#6850 (ported lots of libraries away from std::io)
cc #4248 (implemented unix/dns)
cc #9128 (made everything truly trait objects)
This adds constructors to pipe streams in the new runtime to take ownership of
file descriptors, and also fixes a few tests relating to the std::run changes
(new errors are raised on io_error and one test is xfail'd).
I was seeing a lot of weird behavior with stdin behaving as a tty, and it
doesn't really quite make sense, so instead this moves to using libuv's pipes
instead (which make more sense for stdin specifically).
This prevents piping input to rustc hanging forever.
The general idea is to remove conditions completely from I/O, so in the meantime
remove the read_error condition to mean the same thing as the io_error condition.
The isn't an ideal patch, and the comment why is in the code. Basically uvio
uses task::unkillable which touches the kill flag for a task, and if the task is
failing due to mismangement of the kill flag, then there will be serious
problems when the task tries to print that it's failing.
When uv's TTY I/O is used for the stdio streams, the file descriptors are put
into a non-blocking mode. This means that other concurrent writes to the same
stream can fail with EAGAIN or EWOULDBLOCK. By all I/O to event-loop I/O, we
avoid this error.
There is one location which cannot move, which is the runtime's dumb_println
function. This was implemented to handle the EAGAIN and EWOULDBLOCK errors and
simply retry again and again.
This involved changing a fair amount of code, rooted in how we access the local
IoFactory instance. I added a helper method to the rtio module to access the
optional local IoFactory. This is different than before in which it was assumed
that a local IoFactory was *always* present. Now, a separate io_error is raised
when an IoFactory is not present, yet I/O is requested.
This removes the PathLike trait associated with this "support module". This is
yet another "container of bytes" trait, so I didn't want to duplicate what
already exists throughout libstd. In actuality, we're going to pass of C strings
to the libuv APIs, so instead the arguments are now bound with the 'ToCStr'
trait instead.
Additionally, a layer of complexity was removed by immediately converting these
type-generic parameters into CStrings to get handed off to libuv apis.
We get a little more functionality from libuv for these kinds of streams (things
like terminal dimentions), and it also appears to more gracefully handle the
stream being a window. Beforehand, if you used stdio and hit CTRL+d on a
process, libuv would continually return 0-length successful reads instead of
interpreting that the stream was closed.
I was hoping to be able to write tests for this, but currently the testing
infrastructure doesn't allow tests with a stdin and a stdout, but this has been
manually tested! (not that it means much)
Removed unused import warning in std::mem and cleaned it up too
Removed is_true and is_false from std::bool
Removed freestanding functions in std::bool
- Adds the `Sample` and `IndependentSample` traits for generating numbers where there are parameters (e.g. a list of elements to draw from, or the mean/variance of a normal distribution). The former takes `&mut self` and the latter takes `&self` (this is the only difference).
- Adds proper `Normal` and `Exp`-onential distributions
- Adds `Range` which generates `[lo, hi)` generically & properly (via a new trait) replacing the incorrect behaviour of `Rng.gen_integer_range` (this has become `Rng.gen_range` for convenience, it's far more efficient to use `Range` itself)
- Move the `Weighted` struct from `std::rand` to `std::rand::distributions` & improve it
- optimisations and docs