benchmark result:
```
$ cargo bench
Compiling div-euclid v0.1.0 (/me/div-euclid)
Finished bench [optimized] target(s) in 1.01s
Running unittests src/lib.rs (target/release/deps/div_euclid-7a4530ca7817d1ef)
running 7 tests
test tests::it_works ... ignored
test tests::bench_aaabs ... bench: 10,498,793 ns/iter (+/- 104,360)
test tests::bench_aadefault ... bench: 11,061,862 ns/iter (+/- 94,107)
test tests::bench_abs ... bench: 10,477,193 ns/iter (+/- 81,942)
test tests::bench_default ... bench: 10,622,983 ns/iter (+/- 25,119)
test tests::bench_zzabs ... bench: 10,481,971 ns/iter (+/- 43,787)
test tests::bench_zzdefault ... bench: 11,074,976 ns/iter (+/- 29,633)
test result: ok. 0 passed; 0 failed; 1 ignored; 6 measured; 0 filtered out; finished in 19.35s
```
benchmark code:
```rust
#![feature(test)]
extern crate test;
#[inline(always)]
fn rem_euclid(a:i32,rhs:i32)->i32{
let r = a % rhs;
if r < 0 {
// if rhs is `integer::MIN`, rhs.wrapping_abs() == rhs.wrapping_abs,
// thus r.wrapping_add(rhs.wrapping_abs()) == r.wrapping_add(rhs) == r - rhs,
// which suits our need.
// otherwise, rhs.wrapping_abs() == -rhs, which won't overflow since r is negative.
r.wrapping_add(rhs.wrapping_abs())
} else {
r
}
}
#[cfg(test)]
mod tests {
use super::*;
use test::Bencher;
use rand::prelude::*;
use rand::rngs::SmallRng;
const N:i32=1000;
#[test]
fn it_works() {
let a: i32 = 7; // or any other integer type
let b = 4;
let d:Vec<i32>=(-N..=N).collect();
let n:Vec<i32>=(-N..0).chain(1..=N).collect();
for i in &d {
for j in &n {
assert_eq!(i.rem_euclid(*j),rem_euclid(*i,*j));
}
}
assert_eq!(rem_euclid(a,b), 3);
assert_eq!(rem_euclid(-a,b), 1);
assert_eq!(rem_euclid(a,-b), 3);
assert_eq!(rem_euclid(-a,-b), 1);
}
#[bench]
fn bench_aaabs(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=rem_euclid(*i,*j);
}
}
res
});
}
#[bench]
fn bench_aadefault(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=i.rem_euclid(*j);
}
}
res
});
}
#[bench]
fn bench_abs(b: &mut Bencher) {
let d:Vec<i32>=(-N..=N).collect();
let n:Vec<i32>=(-N..0).chain(1..=N).collect();
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=rem_euclid(*i,*j);
}
}
res
});
}
#[bench]
fn bench_default(b: &mut Bencher) {
let d:Vec<i32>=(-N..=N).collect();
let n:Vec<i32>=(-N..0).chain(1..=N).collect();
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=i.rem_euclid(*j);
}
}
res
});
}
#[bench]
fn bench_zzabs(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=rem_euclid(*i,*j);
}
}
res
});
}
#[bench]
fn bench_zzdefault(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=i.rem_euclid(*j);
}
}
res
});
}
}
```
such code is copy from
https://github.com/rust-lang/rust/blob/master/library/std/src/f32.rs
and
https://github.com/rust-lang/rust/blob/master/library/std/src/f64.rs
using r+rhs.abs() is faster than calc it directly.
Bench result:
```
$ cargo bench
Compiling div-euclid v0.1.0 (/me/div-euclid)
Finished bench [optimized] target(s) in 1.01s
Running unittests src/lib.rs (target/release/deps/div_euclid-7a4530ca7817d1ef)
running 7 tests
test tests::it_works ... ignored
test tests::bench_aaabs ... bench: 10,498,793 ns/iter (+/- 104,360)
test tests::bench_aadefault ... bench: 11,061,862 ns/iter (+/- 94,107)
test tests::bench_abs ... bench: 10,477,193 ns/iter (+/- 81,942)
test tests::bench_default ... bench: 10,622,983 ns/iter (+/- 25,119)
test tests::bench_zzabs ... bench: 10,481,971 ns/iter (+/- 43,787)
test tests::bench_zzdefault ... bench: 11,074,976 ns/iter (+/- 29,633)
test result: ok. 0 passed; 0 failed; 1 ignored; 6 measured; 0 filtered out; finished in 19.35s
```
bench code:
```
#![feature(test)]
extern crate test;
fn rem_euclid(a:i32,rhs:i32)->i32{
let r = a % rhs;
if r < 0 { r + rhs.abs() } else { r }
}
#[cfg(test)]
mod tests {
use super::*;
use test::Bencher;
use rand::prelude::*;
use rand::rngs::SmallRng;
const N:i32=1000;
#[test]
fn it_works() {
let a: i32 = 7; // or any other integer type
let b = 4;
let d:Vec<i32>=(-N..=N).collect();
let n:Vec<i32>=(-N..0).chain(1..=N).collect();
for i in &d {
for j in &n {
assert_eq!(i.rem_euclid(*j),rem_euclid(*i,*j));
}
}
assert_eq!(rem_euclid(a,b), 3);
assert_eq!(rem_euclid(-a,b), 1);
assert_eq!(rem_euclid(a,-b), 3);
assert_eq!(rem_euclid(-a,-b), 1);
}
#[bench]
fn bench_aaabs(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=rem_euclid(*i,*j);
}
}
res
});
}
#[bench]
fn bench_aadefault(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=i.rem_euclid(*j);
}
}
res
});
}
#[bench]
fn bench_abs(b: &mut Bencher) {
let d:Vec<i32>=(-N..=N).collect();
let n:Vec<i32>=(-N..0).chain(1..=N).collect();
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=rem_euclid(*i,*j);
}
}
res
});
}
#[bench]
fn bench_default(b: &mut Bencher) {
let d:Vec<i32>=(-N..=N).collect();
let n:Vec<i32>=(-N..0).chain(1..=N).collect();
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=i.rem_euclid(*j);
}
}
res
});
}
#[bench]
fn bench_zzabs(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=rem_euclid(*i,*j);
}
}
res
});
}
#[bench]
fn bench_zzdefault(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=i.rem_euclid(*j);
}
}
res
});
}
}
```
The new implementation doesn't use weak lang items and instead changes
`#[alloc_error_handler]` to an attribute macro just like
`#[global_allocator]`.
The attribute will generate the `__rg_oom` function which is called by
the compiler-generated `__rust_alloc_error_handler`. If no `__rg_oom`
function is defined in any crate then the compiler shim will call
`__rdl_oom` in the alloc crate which will simply panic.
This also fixes link errors with `-C link-dead-code` with
`default_alloc_error_handler`: `__rg_oom` was previously defined in the
alloc crate and would attempt to reference the `oom` lang item, even if
it didn't exist. This worked as long as `__rg_oom` was excluded from
linking since it was not called.
This is a prerequisite for the stabilization of
`default_alloc_error_handler` (#102318).
poll_fn and Unpin: fix pinning
See [IRLO](https://internals.rust-lang.org/t/surprising-soundness-trouble-around-pollfn/17484) for details: currently `poll_fn` is very subtle to use, since it does not pin the closure, so creating a `Pin::get_unchcked(&mut capture)` inside the closure is unsound. This leads to actual miscompilations with `futures::join!`.
IMO the proper fix is to pin the closure when the future is pinned, which is achieved by changing the `Unpin` implementation. This is a breaking change though. 1.64.0 was *just* released, so maybe this is still okay?
The alternative would be to add some strong comments to the docs saying that closure captures are *not pinned* and doing `Pin::get_unchecked` on them is unsound.
Clarify documentation about the memory layout of `UnsafeCell`
This PR addresses a [comment](https://github.com/rust-lang/rust/pull/101717#issuecomment-1279908390) by `@RalfJung` in PR #101717 to further clarify the documentation of `UnsafeCell<T>`. The previous PR was merged already before we had a chance to correct this, hence this second PR :)
To goal of this PR is:
1. Split the paragraph about the memory layout of `UnsafeCell<T>` and the usage of `UnsafeCell::(raw_)get()` into two paragraphs, so that it is easier to digest for the reader.
2. Slightly simplify the previously added examples in order to reduce redundancy between the new examples and the examples that already [existed](ddd119b2fe/library/core/src/cell.rs (L1858-L1908)) before these 2 PRs (which remained untouched by both PRs).
remove redundant Send impl for references
Also explain why the other instance is not redundant, move it next to the trait they are implementing, and out of the redundant module. This seems to go back all the way to 35ca50bd56, not sure why the module was added.
The instance for `&mut` is the default instance we get anyway, and we don't have anything similar for `Sync`, so IMO we should be consistent and not have the redundant instance here, either.
Try to say that memory outside the AM is always exposed
cc ``@Gankra`` ``@thomcc``
I want to confidently tell people that they can use `from_exposed_addr` to get a pointer for doing MMIO and/or other hardware interactions done with volatile reads/writes at particular addresses outside the Rust AM. Currently, the docs indicate that would be UB.
With this change, now the docs indicate that this is intended to be a valid use of `from_exposed_addr`.
r? ``@RalfJung``
Even nicer errors from assert_unsafe_precondition
For example, now running `cargo test` with this patch I get things like:
```
$ cargo +stage1 test
Finished test [unoptimized + debuginfo] target(s) in 0.01s
Running unittests src/lib.rs (target/debug/deps/malloc_buf-9d105ddf86862995)
running 5 tests
thread 'tests::test_null_buf' panicked at 'unsafe precondition violated: is_aligned_and_not_null(data) &&
crate::mem::size_of::<T>().saturating_mul(len) <= isize::MAX as usize', /home/ben/rust/library/core/src/slice/raw.rs:93:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
thread panicked while panicking. aborting.
error: test failed, to rerun pass `--lib`
Caused by:
process didn't exit successfully: `/tmp/malloc_buf-1.0.0/target/debug/deps/malloc_buf-9d105ddf86862995` (signal: 6, SIGABRT: process abort signal)
```
This is still not perfect, but these are better for another PR:
* `stringify!` is trying to do clever pretty-printing on the `expr` inside `assert_unsafe_precondition` and can even add a newline.
* It would be nice to print a bit more information about where the problem is. Perhaps this is `cfg_attr(debug_assertions, track_caller)`, or perhaps it the function name added to `Location`.
cc ``@RalfJung`` this is what I was thinking of for https://github.com/rust-lang/rust/pull/102732#discussion_r989068907
ptr::eq: clarify that comparing dyn Trait is fragile
Also remove the dyn trait example from `ptr::eq` since those tests are not actually guaranteed to pass due to how unstable vtable comparison is.
Cc ``@rust-lang/libs-api``
Cc discussion following https://github.com/rust-lang/rust/pull/80505
Use a faster allocation size check in slice::from_raw_parts
I've been perusing through the codegen changes that result from turning on the standard library debug assertions. The previous check in here uses saturating arithmetic, which in my experience sometimes makes LLVM just fail to optimize things around the saturating operation.
Here is a demo of the codegen difference: https://godbolt.org/z/WMEqrjajW
Before:
```asm
example::len_check_old:
mov rax, rdi
mov ecx, 3
mul rcx
setno cl
test rax, rax
setns al
and al, cl
ret
example::len_check_old:
mov rax, rdi
mov ecx, 8
mul rcx
setno cl
test rax, rax
setns al
and al, cl
ret
```
After:
```asm
example::len_check_new:
movabs rax, 3074457345618258603
cmp rdi, rax
setb al
ret
example::len_check_new:
shr rdi, 60
sete al
ret
```
Running rustc-perf locally, this looks like up to a 4.5% improvement when `debug-assertions-std = true`.
Thanks ```@LegionMammal978``` (I think that's you?) for turning my idea into a much cleaner implementation.
r? ```@thomcc```
Stabilize `duration_checked_float`
## Stabilization Report
This stabilization report is for a stabilization of `duration_checked_float`, tracking issue: https://github.com/rust-lang/rust/issues/83400.
### Implementation History
- https://github.com/rust-lang/rust/pull/82179
- https://github.com/rust-lang/rust/pull/90247
- https://github.com/rust-lang/rust/pull/96051
- Changed error type to `FromFloatSecsError` in https://github.com/rust-lang/rust/pull/90247
- https://github.com/rust-lang/rust/pull/96051 changes the rounding mode to round-to-nearest instead of truncate.
## API Summary
This stabilization report proposes the following API to be stabilized in `core`, along with their re-exports in `std`:
```rust
// core::time
impl Duration {
pub const fn try_from_secs_f32(secs: f32) -> Result<Duration, TryFromFloatSecsError>;
pub const fn try_from_secs_f64(secs: f64) -> Result<Duration, TryFromFloatSecsError>;
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct TryFromFloatSecsError { ... }
impl core::fmt::Display for TryFromFloatSecsError { ... }
impl core::error::Error for TryFromFloatSecsError { ... }
```
These functions are made const unstable under `duration_consts_float`, tracking issue #72440.
There is an open question in the tracking issue around what the error type should be called which I was hoping to resolve in the context of an FCP.
In this stabilization PR, I have altered the name of the error type to `TryFromFloatSecsError`. In my opinion, the error type shares the name of the method (adjusted to accommodate both types of floats), which is consistent with other error types in `core`, `alloc` and `std` like `TryReserveError` and `TryFromIntError`.
## Experience Report
Code such as this is ready to be converted to a checked API to ensure it is panic free:
```rust
impl Time {
pub fn checked_add_f64(&self, seconds: f64) -> Result<Self, TimeError> {
// Fail safely during `f64` conversion to duration
if seconds.is_nan() || seconds.is_infinite() {
return Err(TzOutOfRangeError::new().into());
}
if seconds.is_sign_positive() {
self.checked_add(Duration::from_secs_f64(seconds))
} else {
self.checked_sub(Duration::from_secs_f64(-seconds))
}
}
}
```
See: https://github.com/artichoke/artichoke/issues/2194.
`@rustbot` label +T-libs-api -T-libs
cc `@mbartlett21`
Use ptr::metadata in <[T]>::len implementation
This avoids duplication of ptr::metadata code.
I believe this is acceptable as the previous approach essentially duplicated `ptr::metadata` because back then `rustc_allow_const_fn_unstable` annotation did not exist.
I would like somebody to ping `@rust-lang/wg-const-eval` as the documentation says:
> Always ping `@rust-lang/wg-const-eval` if you are adding more rustc_allow_const_fn_unstable attributes to any const fn.
`MaybeUninit`: use `assume_init_drop()` in the partially initialized array example
The `assume_init_drop()` method does the same thing as the pointer conversion, and makes the example more straightforward.
Clarify `array::from_fn` documentation
I've seen quite a few of people on social media confused of where the length of array is coming from in the newly stabilized `array::from_fn` example.
This PR tries to clarify the documentation on this.
Adjust argument type for mutable with_metadata_of (#75091)
The method takes two pointer arguments: one `self` supplying the pointer value, and a second pointer supplying the metadata.
The new parameter type more clearly reflects the actual requirements. The provenance of the metadata parameter is disregarded completely. Using a mutable pointer in the call site can be coerced to a const pointer while the reverse is not true.
In some cases, the current parameter type can thus lead to a very slightly confusing additional cast. [Example](cad93775eb).
```rust
// Manually taking an unsized object from a `ManuallyDrop` into another allocation.
let val: &core::mem::ManuallyDrop<T> = …;
let ptr = val as *const _ as *mut T;
let ptr = uninit.as_ptr().with_metadata_of(ptr);
```
This could then instead be simplified to:
```rust
// Manually taking an unsized object from a `ManuallyDrop` into another allocation.
let val: &core::mem::ManuallyDrop<T> = …;
let ptr = uninit.as_ptr().with_metadata_of(&**val);
```
Tracking issue: https://github.com/rust-lang/rust/issues/75091
``@dtolnay`` you're reviewed #95249, would you mind chiming in?
On usize=u64 platforms, the 4th iteration would overflow the `mod_gate`
back to 0. Similarly for usize=u32 platforms, the 3rd iteration would
overflow much the same way.
I tested various approaches to resolving this, including approaches with
`saturating_mul` and `widening_mul` to a double usize. Turns out LLVM
likes `mul_with_overflow` the best. In fact now, that LLVM can see the
iteration count is limited, it will happily unroll the loop into a nice
linear sequence.
You will also notice that the code around the loop got simplified
somewhat. Now that LLVM is handling the loop nicely, there isn’t any
more reasons to manually unroll the first iteration out of the loop
(though looking at the code today I’m not sure all that complexity was
necessary in the first place).
Fixes#103361
Add default trait implementations for "c-unwind" ABI function pointers
Following up on #92964, only add default trait implementations for the `c-unwind` family of function pointers. The previous attempt in #92964 added trait implementations for many more ABIs and ran into concerns regarding the increase in size of the libcore rlib.
An attempt to abstract away function pointer types behind a unified trait to reduce the duplication of trait impls is being discussed in #99531 but this change looks to be blocked on a lang MCP.
Following `@RalfJung's` suggestion in https://github.com/rust-lang/rust/pull/99531#issuecomment-1233440142, this commit is another cut at #92964 but it _only_ adds the impls for `extern "C-unwind" fn` and `unsafe extern "C-unwind" fn`.
I am interested in landing this patch to unblock the stabilization of the `c_unwind` feature.
RFC: https://github.com/rust-lang/rfcs/pull/2945
Tracking Issue: https://github.com/rust-lang/rust/issues/74990
The method takes two pointer arguments: one `self` supplying the pointer
value, and a second pointer supplying the metadata.
The new parameter type more clearly reflects the actual requirements.
The provenance of the metadata parameter is disregarded completely.
Using a mutable pointer in the call site can be coerced to a const
pointer while the reverse is not true.
An example of the current use:
```rust
// Manually taking an unsized object from a `ManuallyDrop` into another allocation.
let val: &core::mem::ManuallyDrop<T> = …;
let ptr = val as *const _ as *mut T;
let ptr = uninit.as_ptr().with_metadata_of(ptr);
```
This could then instead be simplified to:
```rust
// Manually taking an unsized object from a `ManuallyDrop` into another allocation.
let val: &core::mem::ManuallyDrop<T> = …;
let ptr = uninit.as_ptr().with_metadata_of(&**val);
```
Adjust `transmute{,_copy}` to be clearer about which of `T` and `U` is input vs output
This is essentially a documentation-only change (although it does touch code in an irrelevant way).
Following up on #92964, only add default trait implementations for the
`c-unwind` family of function pointers. The previous attempt in #92964
added trait implementations for many more ABIs and ran into concerns
regarding the increase in size of the libcore rlib.
An attempt to abstract away function pointer types behind a unified
trait to reduce the duplication of trait impls is being discussed in #99531
but this change looks to be blocked on a lang MCP.
Following @RalfJung's suggestion in
https://github.com/rust-lang/rust/pull/99531#issuecomment-1233440142,
this commit is another cut at #92964 but it _only_ adds the impls for
`extern "C-unwind" fn` and `unsafe extern "C-unwind" fn`.
I am interested in landing this patch to unblock the stabilization of
the `c_unwind` feature.
RFC: https://github.com/rust-lang/rfcs/pull/2945
Tracking Issue: https://github.com/rust-lang/rust/issues/74990
Make transpose const and inline
r? `@scottmcm`
- These should have been const from the beginning since we're never going to do more than a transmute.
- Inline these always because that's what every other method in MaybeUninit which simply casts does. :) Ok, but a stronger justification is that because we're taking in arrays by `self`, not inlining would defeat the whole purpose of using `MaybeUninit` due to the copying.
Optimize `slice_iter.copied().next_chunk()`
```
OLD:
test iter::bench_copied_array_chunks ... bench: 371 ns/iter (+/- 7)
NEW:
test iter::bench_copied_array_chunks ... bench: 31 ns/iter (+/- 0)
```
The default `next_chunk` implementation suffers from having to assemble the array byte by byte via `next()`, checking the `Option<&T>` and then dereferencing `&T`. The specialization copies the chunk directly from the slice.
More slice::partition_point examples
After seeing the discussion of `binary_search` vs `partition_point` in #101999, I thought some more example code could be helpful.
doc: rewrite doc for uint::{carrying_add,borrowing_sub}
Reword the documentation for bigint helper methods `uint::{carrying_add,borrowing_sub}` (#85532).
The examples were also rewritten to demonstrate how the methods can be used in bignum arithmetic. No loops are used in the examples, but the variable names were chosen to include indices so that it is clear how this can be used in a loop if required.
Also, previously `carrying_add` had an example to say that if the input carry is false, the method is equivalent to `overflowing_add`. While the note was kept, the example was removed and an extra note was added to make sure this equivalence is not assumed for signed integers as well.
Remove the redundant `Some(try_opt!(..))` in `checked_pow`
The final return value doesn't need to be tried at all -- we can just
return the checked option directly. The optimizer can probably figure
this out anyway, but there's no need to make it work here.
The final return value doesn't need to be tried at all -- we can just
return the checked option directly. The optimizer can probably figure
this out anyway, but there's no need to make it work here.
Clarify the possible return values of `len_utf16`
`char::len_utf16` always return 1 or 2. Clarify this in the docs, in the same way as `char::len_utf8`.
Add documentation about the memory layout of `UnsafeCell<T>`
The documentation for `UnsafeCell<T>` currently does not make any promises about its memory layout. This PR adds this documentation, namely that the memory layout of `UnsafeCell<T>` is the same as the memory layout of its inner `T`.
# Use case
Without this layout promise, the following cast would not be legally possible:
```rust
fn example<T>(ptr: *mut T) -> *const UnsafeCell<T> {
ptr as *const UnsafeCell<T>
}
```
A use case where this can come up involves FFI. If Rust receives a pointer over a FFI boundary which provides shared read-write access (with some form of custom synchronization), and this pointer is managed by some Rust struct with lifetime `'a`, then it would greatly simplify its (internal) API and safety contract if a `&'a UnsafeCell<T>` can be created from a raw FFI pointer `*mut T`. A lot of safety checks can be done when receiving the pointer for the first time through FFI (non-nullness, alignment, initialize uninit bytes, etc.) and these properties can then be encoded into the `&UnsafeCell<T>` type. Without this documentation guarantee, this is not legal today outside of the standard library.
# Caveats
Casting in the opposite direction is still not valid, even with this documentation change:
```rust
fn example2<T>(ptr: &UnsafeCell<T>) -> &mut T {
let t = ptr as *const UnsafeCell<T> as *mut T;
unsafe { &mut *t }
}
```
This is because the only legal way to obtain a mutable pointer to the contents of the shared reference is through [`UnsafeCell::get`](https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html#method.get) and [`UnsafeCell::raw_get`](https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html#method.raw_get). Although there might be a desire to also make this legal at some point in the future, that part is outside the scope of this PR. Also see this relevant [Zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/136281-t-lang.2Fwg-unsafe-code-guidelines/topic/transmuting.20.26.20-.3E.20.26mut).
# Alternatives
Instead of adding a new documentation promise, it's also possible to add a new method to `UnsafeCell<T>` with signature `pub fn from_ptr_bikeshed(ptr: *mut T) -> *const UnsafeCell<T>` which indirectly only allows one-way casting to `*const UnsafeCell<T>`.
Fix `Duration::{try_,}from_secs_f{32,64}(-0.0)`
Make `Duration::{try_,}from_secs_f{32,64}(-0.0)` return `Duration::ZERO` (as they did before #90247) instead of erroring/panicking.
I'll update this PR to remove the `#![feature(duration_checked_float)]` if #102271 is merged before this PR.
Tracking issue for `try_from_secs_f{32,64}`: #83400
nicer errors from assert_unsafe_precondition
This makes the errors shown by cargo-careful nicer, and since `panic_no_unwind` is `nounwind noreturn` it hopefully doesn't have bad codegen impact. Thanks to `@bjorn3` for the hint!
Would be nice if we could somehow supply our own (static) message to print, currently it always prints `panic in a function that cannot unwind`. But still, this is better than before.
Warn about safety of `fetch_update`
Specifically as it relates to the ABA problem.
`fetch_update` is a useful function, and one that isn't provided by, say, C++. However, this does not mean the function is magic. It is implemented in terms of `compare_exchange_weak`, and in particular, suffers from the ABA problem. See the following code, which is a naive implementation of `pop` in a lock-free queue:
```rust
fn pop(&self) -> Option<i32> {
self.front.fetch_update(Ordering::Relaxed, Ordering::Acquire, |front| {
if front == ptr::null_mut() {
None
}
else {
Some(unsafe { (*front).next })
}
}.ok()
}
```
This code is unsound if called from multiple threads because of the ABA problem. Specifically, suppose nodes are allocated with `Box`. Suppose the following sequence happens:
```
Initial: Queue is X -> Y.
Thread A: Starts popping, is pre-empted.
Thread B: Pops successfully, twice, leaving the queue empty.
Thread C: Pushes, and `Box` returns X (very common for allocators)
Thread A: Wakes up, sees the head is still X, and stores Y as the new head.
```
But `Y` is deallocated. This is undefined behaviour.
Adding a note about this problem to `fetch_update` should hopefully prevent users from being misled, and also, a link to this common problem is, in my opinion, an improvement to our docs on atomics.
slice: #[inline] a couple iterator methods.
The one I care about and actually saw in the wild not getting inlined is
clone(). We ended up doing a whole function call for something that just
copies two pointers.
I ended up marking as_slice / as_ref as well because make_slice is
inline(always) itself, and is also the kind of think that can kill
performance in hot loops if you expect it to get inlined. But happy to
undo those.
Uplift `clippy::for_loops_over_fallibles` lint into rustc
This PR, as the title suggests, uplifts [`clippy::for_loops_over_fallibles`] lint into rustc. This lint warns for code like this:
```rust
for _ in Some(1) {}
for _ in Ok::<_, ()>(1) {}
```
i.e. directly iterating over `Option` and `Result` using `for` loop.
There are a number of suggestions that this PR adds (on top of what clippy suggested):
1. If the argument (? is there a better name for that expression) of a `for` loop is a `.next()` call, then we can suggest removing it (or rather replacing with `.by_ref()` to allow iterator being used later)
```rust
for _ in iter.next() {}
// turns into
for _ in iter.by_ref() {}
```
2. (otherwise) We can suggest using `while let`, this is useful for non-iterator, iterator-like things like [async] channels
```rust
for _ in rx.recv() {}
// turns into
while let Some(_) = rx.recv() {}
```
3. If the argument type is `Result<impl IntoIterator, _>` and the body has a `Result<_, _>` type, we can suggest using `?`
```rust
for _ in f() {}
// turns into
for _ in f()? {}
```
4. To preserve the original behavior and clear intent, we can suggest using `if let`
```rust
for _ in f() {}
// turns into
if let Some(_) = f() {}
```
(P.S. `Some` and `Ok` are interchangeable depending on the type)
I still feel that the lint wording/look is somewhat off, so I'll be happy to hear suggestions (on how to improve suggestions :D)!
Resolves#99272
[`clippy::for_loops_over_fallibles`]: https://rust-lang.github.io/rust-clippy/master/index.html#for_loops_over_fallibles
Remove empty core::lazy and std::lazy
PR #98165 with commits 7c360dc117 and c1a2db3372 has moved all of the components of these modules into different places, namely {std,core}::sync and {std,core}::cell. The empty modules remained. As they are unstable, we can simply remove them.
`EscapeAscii` is not an `ExactSizeIterator`
Fixes#99878
Do we want/need `EscapeAscii` to be an `ExactSizeIterator`? I guess we could precompute the length of the output if so?
add a few more assert_unsafe_precondition
Add debug-assertion checking for `ptr.read()`, `ptr.write(_)`, and `unreachable_unchecked.`
This is quite useful for [cargo-careful](https://github.com/RalfJung/cargo-careful).
PR #98165 with commits 7c360dc117 and c1a2db3372
has moved all of the components of these modules into different places,
namely {std,core}::sync and {std,core}::cell. The empty
modules remained. As they are unstable, we can simply remove them.
Use a macro to not have to copy-paste `ConstFnMutClosure::new(&mut fold, NeverShortCircuit::wrap_mut_2_imp)).0` everywhere
Also use that macro to replace a bunch of places that had custom closure-wrappers.
+35 -114 sounds good to me.
Implement `Ready::into_inner()`
Tracking issue: #101196.
This implements a method to unwrap the value inside a `Ready` outside an async context.
See https://docs.rs/futures/0.3.24/futures/future/struct.Ready.html#method.into_inner for previous work.
This was discussed in [Zulip beforehand](https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/.60Ready.3A.3Ainto_inner.28.29.60):
> An example I'm hitting right now:
I have a cross-platform library that provides a functions that returns a `Future`. The only reason why it returns a `Future` is because the WASM platform requires it, but the native doesn't, to make a cross-platform API that is equal for all I just return a `Ready` on the native targets.
>
> Now I would like to expose native-only functions that aren't async, that users can use to avoid having to deal with async when they are targeting native. With `into_inner` that's easily solvable now.
>
> I want to point out that some internal restructuring could be used to solve that problem too, but in this case it's not that simple, the library uses internal traits that return the `Future` already and playing around with that would introduce unnecessary `cfg` in a lot more places. So it is really only a quality-of-life feature.
Change the parameter name of From::from to `value`
The `From` trait is currently defined as:
```rust
pub trait From<T>: Sized {
fn from(_: T) -> Self;
}
```
The name of the argument is `_`. I am proposing to change it to `value`, ie.
```rust
pub trait From<T>: Sized {
fn from(value: T) -> Self;
}
```
This would be more consistent with the `TryFrom`, which looks like this:
```rust
pub trait TryFrom<T>: Sized {
type Error;
fn try_from(value: T) -> Result<Self, Self::Error>;
}
```
The reason for this proposal is twofold:
1. Consistency with the rest of the standard library. The `TryFrom` trait uses `value`, and no `From` implementation uses the default name (as it is quite useless).
2. When generating trait implementations with rust-analyzer/IntelliJ, the parameter name is copied, and it always has to be changed.
Optionally, another name like `x` could be used. I only propose `value` for consistency with `TryFrom`.
Changing parameter names is not a breaking change.
Note: this was originally posted as an internals thread [here](https://internals.rust-lang.org/t/change-the-argument-name-of-from-from/17480)
Add T to PhantomData impl Debug
This add debug information for `PhantomData`, I believe it's make sense to add this to debug impl of `PhantomData` since `T` is what define what is the `PhantomData` just write `"PhantomData"` is not very useful for debugging.
Alternative:
* `PhantomData::<{}>`
* `PhantomData { t: "str_type" }`
`@rustbot` label +T-libs-api -T-libs
introduce `{char, u8}::is_ascii_octdigit`
This feature adds two new APIs: `char::is_ascii_octdigit` and `u8::is_ascii_octdigit`, under the feature gate `is_ascii_octdigit`. These methods are shorthands for `char::is_digit(self, 8)` and `u8::is_digit(self, 8)`:
```rust
// core::char
impl char {
pub fn is_ascii_octdigit(self) -> bool;
}
// core::num
impl u8 {
pub fn is_ascii_octdigit(self) -> bool;
}
```
---
Couple of things I need help understanding:
- `const`ness: have I used the right attribute in this case?
- is there a way to run the tests for `core::char` alone, instead of `./x.py test library/core`?
docs: Improve AsRef / AsMut docs on blanket impls
There are several issues with the current state of `AsRef` and `AsMut` as [discussed here on IRLO](https://internals.rust-lang.org/t/semantics-of-asref/17016). See also #39397, #45742, #73390, #98905, and the FIXMEs [here](https://github.com/rust-lang/rust/blob/1.62.0/library/core/src/convert/mod.rs#L509-L515) and [here](https://github.com/rust-lang/rust/blob/1.62.0/library/core/src/convert/mod.rs#L530-L536). These issues are difficult to fix. This PR aims to update the documentation to better reflect the status-quo and to give advice on how `AsRef` and `AsMut` should be used.
In particular:
- Explicitly mention that `AsRef` and `AsMut` do not auto-dereference generally for all dereferencable types (but only if inner type is a shared and/or mutable reference)
- Give advice to not use `AsRef` or `AsMut` for the sole purpose of dereferencing
- Suggest providing a transitive `AsRef` or `AsMut` implementation for types which implement `Deref`
- Add new section "Reflexivity" in documentation comments for `AsRef` and `AsMut`
- Provide better example for `AsMut`
- Added heading "Relation to `Borrow`" in `AsRef`'s docs to improve structure
Improve documentation of `slice::{from_ptr_range, from_ptr_range_mut}`
Document panic conditions (`T` is a ZST) and sync docs of shared/unique version.
cc `@wx-csy`
Improve `FromStr` example
The `from_str` implementation from the example had an `unwrap` that would make it panic on invalid input strings. Instead of panicking, it nows returns an error to better reflect the intented behavior of the `FromStr` trait.
The `from_str` implementation from the example had an `unwrap` that would make it panic on invalid input strings. Instead of panicking, it nows returns an error to better reflect the intented behavior of the `FromStr` trait.