Instead of reading a byte at a time in a loop we copy the relevant bytes into
a temporary vector of size eight. We can then read the value from the temporary
vector using a single u64 read. LLVM seems to be able to optimize this
almost scarily good.
This is just an unnecessary trait that no one's ever going to parameterize over
and it's more useful to just define the methods directly on the types
themselves. The implementors of this type almost always don't want
inner_mut_ref() but they're forced to define it as well.
This will allow capturing of common things like logging messages, stdout prints
(using stdio println), and failure messages (printed to stderr). Any new prints
added to libstd should be funneled through these task handles to allow capture
as well.
Additionally, this commit redirects logging back through a `Logger` trait so the
log level can be usefully consumed by an arbitrary logger.
This commit also introduces methods to set the task-local stdout handles:
* std::io::stdio::set_stdout
* std::io::stdio::set_stderr
* std::io::logging::set_logger
These methods all return the previous logger just in case it needs to be used
for inspection.
I plan on using this infrastructure for extra::test soon, but we don't quite
have the primitives that I'd like to use for it, so it doesn't migrate
extra::test at this time.
Closes#6369
Similarly to the recent commit to do this for networking, there's no reason that
a read on a file descriptor should continue reading until the entire buffer is
full. This makes sense when dealing with literal files, but when dealing with
things like stdin this doesn't make sense.
This will allow capturing of common things like logging messages, stdout prints
(using stdio println), and failure messages (printed to stderr). Any new prints
added to libstd should be funneled through these task handles to allow capture
as well.
Additionally, this commit redirects logging back through a `Logger` trait so the
log level can be usefully consumed by an arbitrary logger.
This commit also introduces methods to set the task-local stdout handles:
* std::io::stdio::set_stdout
* std::io::stdio::set_stderr
* std::io::logging::set_logger
These methods all return the previous logger just in case it needs to be used
for inspection.
I plan on using this infrastructure for extra::test soon, but we don't quite
have the primitives that I'd like to use for it, so it doesn't migrate
extra::test at this time.
Closes#6369
libnative erroneously would attempt to fill the entire buffer in a call to
`read` before returning, when rather it should return immediately because
there's not guaranteed to be any data that will ever be received again.
Close#11328
libnative erroneously would attempt to fill the entire buffer in a call to
`read` before returning, when rather it should return immediately because
there's not guaranteed to be any data that will ever be received again.
Close#11328
These methods are sorely needed on readers and writers, and I believe that the
encoding story should be solved with composition. This commit adds back the
missed functions when reading/writing strings onto generic Readers/Writers.
The old `rtio-processes` run-pass test is now moved into libstd's `io::process` module, and all process and TCP tests are now run with `iotest!` (both a native and a green version are tested).
All TCP networking on windows is provided by `ws2_32` which is apparently very similar to unix networking (hurray!).
Move the tests into libstd, use the `iotest!` macro to test both native and uv
bindings, and use the cloexec trick to figure out when the child process fails
in exec.
This patch changes `result::collect` (and adds a new `option::collect`) from creating a `~[T]` to take an `Iterator`. This makes the function much more flexible, and may replace the need for #10989.
This patch is a little more complicated than it needs to be because of #11084. Once that is fixed we can replace the `CollectIterator` with a `Scan` iterator.
It also fixes a test warning.
* vec::raw::to_ptr is gone
* Pausible => Pausable
* Removing @
* Calling the main task "<main>"
* Removing unused imports
* Removing unused mut
* Bringing some libextra tests up to date
* Allowing compiletest to work at stage0
* Fixing the bootstrap-from-c rmake tests
* assert => rtassert in a few cases
* printing to stderr instead of stdout in fail!()
Note that this removes a number of run-pass tests which are exercising behavior
of the old runtime. This functionality no longer exists and is thoroughly tested
inside of libgreen and libnative. There isn't really the notion of "starting the
runtime" any more. The major notion now is "bootstrapping the initial task".
All tests except for the homing tests are now working again with the
librustuv/libgreen refactoring. The homing-related tests are currently commented
out and now placed in the rustuv::homing module.
I plan on refactoring scheduler pool spawning in order to enable more homing
tests in a future commit.
This commit introduces a new crate called "native" which will be the crate that
implements the 1:1 runtime of rust. This currently entails having an
implementation of std::rt::Runtime inside of libnative as well as moving all of
the native I/O implementations to libnative.
The current snag is that the start lang item must currently be defined in
libnative in order to start running, but this will change in the future.
Cool fact about this crate, there are no extra features that are enabled.
Note that this commit does not include any makefile support necessary for
building libnative, that's all coming in a later commit.
Printing is an incredibly useful debugging utility, and it's not much help if
your debugging prints just trigger an obscure abort when you need them most. In
order to handle this case, forcibly fall back to a libc::write implementation of
printing whenever a local task is not available.
Note that this is *not* a 1:1 fallback. All 1:1 rust tasks will still have a
local Task that it can go through (and stdio will be created through the local
IO factory), this is only a fallback for "no context" rust code (such as that
setting up the context).
It is not the case that all programs will always be able to acquire an instance
of the LocalIo borrow, so this commit exposes this limitation by returning
Option<LocalIo> from LocalIo::borrow().
At the same time, a helper method LocalIo::maybe_raise() has been added in order
to encapsulate the functionality of raising on io_error if there is on local I/O
available.
This module contains many M:N specific concepts. This will no longer be
available with libgreen, and most functions aren't really that necessary today
anyway. New testing primitives will be introduced as they become available for
1:1 and M:N.
A new io::test module is introduced with the new ip4/ip6 address helpers to
continue usage in io tests.
Could prevent callers from catching the situation and lead to e.g early
iterator terminations (cf. `Reader::read_byte`) since `None` is only to
be returned only on EOF.
Could prevent callers from catching the situation and lead to e.g early
iterator terminations (cf. `Reader::read_byte') since `None' is only to
be returned only on EOF.
This adds a bunch of useful Reader and Writer implementations. I'm not a
huge fan of the name `util` but I can't think of a better name and I
don't want to make `std::io` any longer than it already is.
This adds a bunch of useful Reader and Writer implementations. I'm not a
huge fan of the name `util` but I can't think of a better name and I
don't want to make `std::io` any longer than it already is.
- `Buffer.lines()` returns `LineIterator` which yields line using
`.read_line()`.
- `Reader.bytes()` now takes `&mut self` instead of `self`.
- `Reader.read_until()` swallows `EndOfFile`. This also affects
`.read_line()`.
This reverts commit c54427ddfb.
Leave the #[ignores] in that were added to rustpkg tests.
Conflicts:
src/librustc/driver/driver.rs
src/librustc/metadata/creader.rs
This function had type &[u8] -> ~str, i.e. it allocates a string
internally, even though the non-allocating version that take &[u8] ->
&str and ~[u8] -> ~str are all that is necessary in most circumstances.
BufferedWriter::inner flushes before returning the underlying writer.
BufferedWriter::write no longer flushes the underlying writer.
LineBufferedWriter::write flushes up to the *last* newline in the input
string, not the first.
BufferedWriter::inner flushes before returning the underlying writer.
BufferedWriter::write no longer flushes the underlying writer.
LineBufferedWriter::write flushes up to the *last* newline in the input
string, not the first.
This implements a fair amount of the unimpl() functionality in io::native
relating to filesystem operations. I've also modified all io::fs tests to run in
both a native and uv environment (so everything is actually tested).
There are a few bits of remaining functionality which I was unable to get
working:
* truncate on windows
* change_file_times on windows
* lstat on windows
I think that change_file_times may just need a better interface, but the other
two have large implementations in libuv which I didn't want to tackle trying to
copy. I found a `chsize` function to work for truncate on windows, but it
doesn't quite seem to be working out.
This implements a fair amount of the unimpl() functionality in io::native
relating to filesystem operations. I've also modified all io::fs tests to run in
both a native and uv environment (so everything is actually tested).
There are a two bits of remaining functionality which I was unable to get
working:
* change_file_times on windows
* lstat on windows
I think that change_file_times may just need a better interface, but lstat has a
large implementation in libuv which I didn't want to tackle trying to copy.
There are issues with reading stdin when it is actually attached to a pipe, but
I have run into no problems in writing to stdout/stderr when they are attached
to pipes.
There are issues with reading stdin when it is actually attached to a pipe, but
I have run into no problems in writing to stdout/stderr when they are attached
to pipes.
These commits create a `Buffer` trait in the `io` module which represents an I/O reader which is internally buffered. This abstraction is used to reasonably implement `read_line` and `read_until` along with at least an ok implementation of `read_char` (although I certainly haven't benchmarked `read_char`).
This commit re-organizes the io::native module slightly in order to have a
working implementation of rtio::IoFactory which uses native implementations. The
goal is to seamlessly multiplex among libuv/native implementations wherever
necessary.
Right now most of the native I/O is unimplemented, but we have existing bindings
for file descriptors and processes which have been hooked up. What this means is
that you can now invoke println!() from libstd with no local task, no local
scheduler, and even without libuv.
There's still plenty of work to do on the native I/O factory, but this is the
first steps into making it an official portion of the standard library. I don't
expect anyone to reach into io::native directly, but rather only std::io
primitives will be used. Each std::io interface seamlessly falls back onto the
native I/O implementation if the local scheduler doesn't have a libuv one
(hurray trait ojects!)
This commit re-organizes the io::native module slightly in order to have a
working implementation of rtio::IoFactory which uses native implementations. The
goal is to seamlessly multiplex among libuv/native implementations wherever
necessary.
Right now most of the native I/O is unimplemented, but we have existing bindings
for file descriptors and processes which have been hooked up. What this means is
that you can now invoke println!() from libstd with no local task, no local
scheduler, and even without libuv.
There's still plenty of work to do on the native I/O factory, but this is the
first steps into making it an official portion of the standard library. I don't
expect anyone to reach into io::native directly, but rather only std::io
primitives will be used. Each std::io interface seamlessly falls back onto the
native I/O implementation if the local scheduler doesn't have a libuv one
(hurray trait ojects!)
I implemented BufWriter. I realize the use of conditions are on their way out for IO, but it does raise a condition if a write will not fit in the buffer for now.
I also replaced the seek code for MemWriter. It was adding the offset as a uint, which is unsound for negative offsets. It only happened to work because unsigned addition performs the same operation with two's complement, and sizeof(uint) <= sizeof(i64) so there was no (lack of) sign extension. I replaced this with computing an offset as an i64 and clamping to zero. I don't expect anyone will have use BufWriter with a byte buffer greater than 2^63 bytes any time soon.
@alexcrichton
Closes#10433
This trait is meant to abstract whether a reader is actually implemented with an
underlying buffer. For all readers which are implemented as such, we can
efficiently implement things like read_char, read_line, read_until, etc. There
are two required methods for managing the internal buffer, and otherwise
read_line and friends can all become default methods.
Closes#10334
Filled in the implementations of Writer and Seek for BufWriter. It
raises the io_error condition if a write cannot fit in the buffer.
The Seek implementation for MemWriter, which was incorrectly using
unsigned arithmatic to add signed offsets, has also been replaced.