This moves as much allocation as possible from teh std::str module into
core::str. This includes essentially all non-allocating functionality, mostly
iterators and slicing and such.
This primarily splits the Str trait into only having the as_slice() method,
adding a new StrAllocating trait to std::str which contains the relevant new
allocation methods. This is a breaking change if any of the methods of "trait
Str" were overriden. The old functionality can be restored by implementing both
the Str and StrAllocating traits.
[breaking-change]
for `~str`/`~[]`.
Note that `~self` still remains, since I forgot to add support for
`Box<self>` before the snapshot.
How to update your code:
* Instead of `~EXPR`, you should write `box EXPR`.
* Instead of `~TYPE`, you should write `Box<Type>`.
* Instead of `~PATTERN`, you should write `box PATTERN`.
[breaking-change]
This patch changes `std::io::FilePermissions` from an exposed `u32`
representation to a typesafe representation (that only allows valid
flag combinations) using the `std::bitflags`, thus ensuring a greater
degree of safety on the Rust side.
Despite the change to the type, most code should continue to work
as-is, sincde the new type provides bit operations in the style of C
flags. To get at the underlying integer representation, use the `bits`
method; to (unsafely) convert to `FilePermissions`, use
`FilePermissions::from_bits`.
Closes#6085.
[breaking-change]
This adds a `TcpStream::connect_timeout` function in order to assist opening
connections with a timeout (cc #13523). There isn't really much design space for
this specific operation (unlike timing out normal blocking reads/writes), so I
am fairly confident that this is the correct interface for this function.
The function is marked #[experimental] because it takes a u64 timeout argument,
and the u64 type is likely to change in the future.
This removes all resizability support for ~[T] vectors in preparation of DST.
The only growable vector remaining is Vec<T>. In summary, the following methods
from ~[T] and various functions were removed. Each method/function has an
equivalent on the Vec type in std::vec unless otherwise stated.
* slice::OwnedCloneableVector
* slice::OwnedEqVector
* slice::append
* slice::append_one
* slice::build (no replacement)
* slice::bytes::push_bytes
* slice::from_elem
* slice::from_fn
* slice::with_capacity
* ~[T].capacity()
* ~[T].clear()
* ~[T].dedup()
* ~[T].extend()
* ~[T].grow()
* ~[T].grow_fn()
* ~[T].grow_set()
* ~[T].insert()
* ~[T].pop()
* ~[T].push()
* ~[T].push_all()
* ~[T].push_all_move()
* ~[T].remove()
* ~[T].reserve()
* ~[T].reserve_additional()
* ~[T].reserve_exect()
* ~[T].retain()
* ~[T].set_len()
* ~[T].shift()
* ~[T].shrink_to_fit()
* ~[T].swap_remove()
* ~[T].truncate()
* ~[T].unshift()
* ~str.clear()
* ~str.set_len()
* ~str.truncate()
Note that no other API changes were made. Existing apis that took or returned
~[T] continue to do so.
[breaking-change]
Someone reading the docs won't know what the types of various things
are, so this adds them in a few meaningful places to help with
comprehension.
cc #13423.
move errno -> IoError converter into std, bubble up OSRng errors
Also adds a general errno -> `~str` converter to `std::os`, and makes the failure messages for the things using `OSRng` (e.g. (transitively) the task-local RNG, meaning hashmap initialisation failures aren't such a black box).
I've found a common use case being to fill a slice (not an owned vector)
completely with bytes. It's posible for short reads to happen, and if you're
trying to get an exact number of bytes then this helper will be useful.
These methods can be mistaken for general "read some bytes" utilities when
they're actually only meant for reading an exact number of bytes. By renaming
them it's much clearer about what they're doing without having to read the
documentation.
Closes#12892
This commit moves all logging out of the standard library into an external
crate. This crate is the new crate which is responsible for all logging macros
and logging implementation. A few reasons for this change are:
* The crate map has always been a bit of a code smell among rust programs. It
has difficulty being loaded on almost all platforms, and it's used almost
exclusively for logging and only logging. Removing the crate map is one of the
end goals of this movement.
* The compiler has a fair bit of special support for logging. It has the
__log_level() expression as well as generating a global word per module
specifying the log level. This is unfairly favoring the built-in logging
system, and is much better done purely in libraries instead of the compiler
itself.
* Initialization of logging is much easier to do if there is no reliance on a
magical crate map being available to set module log levels.
* If the logging library can be written outside of the standard library, there's
no reason that it shouldn't be. It's likely that we're not going to build the
highest quality logging library of all time, so third-party libraries should
be able to provide just as high-quality logging systems as the default one
provided in the rust distribution.
With a migration such as this, the change does not come for free. There are some
subtle changes in the behavior of liblog vs the previous logging macros:
* The core change of this migration is that there is no longer a physical
log-level per module. This concept is still emulated (it is quite useful), but
there is now only a global log level, not a local one. This global log level
is a reflection of the maximum of all log levels specified. The previously
generated logging code looked like:
if specified_level <= __module_log_level() {
println!(...)
}
The newly generated code looks like:
if specified_level <= ::log::LOG_LEVEL {
if ::log::module_enabled(module_path!()) {
println!(...)
}
}
Notably, the first layer of checking is still intended to be "super fast" in
that it's just a load of a global word and a compare. The second layer of
checking is executed to determine if the current module does indeed have
logging turned on.
This means that if any module has a debug log level turned on, all modules
with debug log levels get a little bit slower (they all do more expensive
dynamic checks to determine if they're turned on or not).
Semantically, this migration brings no change in this respect, but
runtime-wise, this will have a perf impact on some code.
* A `RUST_LOG=::help` directive will no longer print out a list of all modules
that can be logged. This is because the crate map will no longer specify the
log levels of all modules, so the list of modules is not known. Additionally,
warnings can no longer be provided if a malformed logging directive was
supplied.
The new "hello world" for logging looks like:
#[phase(syntax, link)]
extern crate log;
fn main() {
debug!("Hello, world!");
}
This commit shreds all remnants of libextra from the compiler and standard
distribution. Two modules, c_vec/tempfile, were moved into libstd after some
cleanup, and the other modules were moved to separate crates as seen fit.
Closes#8784Closes#12413Closes#12576
Most IO related functions return an IoResult so that the caller can handle failure in whatever way is appropriate. However, the `lines`, `bytes`, and `chars` iterators all supress errors. This means that code that needs to handle errors can't use any of these iterators. All three of these iterators were updated to produce IoResults.
Fixes#12368
Most IO related functions return an IoResult so that the caller can handle failure
in whatever way is appropriate. However, the `lines`, `bytes`, and `chars` iterators all
supress errors. This means that code that needs to handle errors can't use any of these
iterators. All three of these iterators were updated to produce IoResults.
Fixes#12368
Formatting via reflection has been a little questionable for some time now, and
it's a little unfortunate that one of the standard macros will silently use
reflection when you weren't expecting it. This adds small bits of code bloat to
libraries, as well as not always being necessary. In light of this information,
this commit switches assert_eq!() to using {} in the error message instead of
{:?}.
In updating existing code, there were a few error cases that I encountered:
* It's impossible to define Show for [T, ..N]. I think DST will alleviate this
because we can define Show for [T].
* A few types here and there just needed a #[deriving(Show)]
* Type parameters needed a Show bound, I often moved this to `assert!(a == b)`
* `Path` doesn't implement `Show`, so assert_eq!() cannot be used on two paths.
I don't think this is much of a regression though because {:?} on paths looks
awful (it's a byte array).
Concretely speaking, this shaved 10K off a 656K binary. Not a lot, but sometime
significant for smaller binaries.
This lowers the #[allow(missing_doc)] directive into some of the lower modules
which are less mature. Most I/O modules now require comprehensive documentation.
This commit removes deriving(ToStr) in favor of deriving(Show), migrating all impls of ToStr to fmt::Show.
Most of the details can be found in the first commit message.
Closes#12477
The std::run module is a relic from a standard library long since past, and
there's not much use to having two modules to execute processes with where one
is slightly more convenient. This commit merges the two modules, moving lots of
functionality from std::run into std::io::process and then deleting
std::run.
New things you can find in std::io::process are:
* Process::new() now only takes prog/args
* Process::configure() takes a ProcessConfig
* Process::status() is the same as run::process_status
* Process::output() is the same as run::process_output
* I/O for spawned tasks is now defaulted to captured in pipes instead of ignored
* Process::kill() was added (plus an associated green/native implementation)
* Process::wait_with_output() is the same as the old finish_with_output()
* destroy() is now signal_exit()
* force_destroy() is now signal_kill()
Closes#2625Closes#10016
The std::run module is a relic from a standard library long since past, and
there's not much use to having two modules to execute processes with where one
is slightly more convenient. This commit merges the two modules, moving lots of
functionality from std::run into std::io::process and then deleting
std::run.
New things you can find in std::io::process are:
* Process::new() now only takes prog/args
* Process::configure() takes a ProcessConfig
* Process::status() is the same as run::process_status
* Process::output() is the same as run::process_output
* I/O for spawned tasks is now defaulted to captured in pipes instead of ignored
* Process::kill() was added (plus an associated green/native implementation)
* Process::wait_with_output() is the same as the old finish_with_output()
* destroy() is now signal_exit()
* force_destroy() is now signal_kill()
Closes#2625Closes#10016
This commit changes the ToStr trait to:
impl<T: fmt::Show> ToStr for T {
fn to_str(&self) -> ~str { format!("{}", *self) }
}
The ToStr trait has been on the chopping block for quite awhile now, and this is
the final nail in its coffin. The trait and the corresponding method are not
being removed as part of this commit, but rather any implementations of the
`ToStr` trait are being forbidden because of the generic impl. The new way to
get the `to_str()` method to work is to implement `fmt::Show`.
Formatting into a `&mut Writer` (as `format!` does) is much more efficient than
`ToStr` when building up large strings. The `ToStr` trait forces many
intermediate allocations to be made while the `fmt::Show` trait allows
incremental buildup in the same heap allocated buffer. Additionally, the
`fmt::Show` trait is much more extensible in terms of interoperation with other
`Writer` instances and in more situations. By design the `ToStr` trait requires
at least one allocation whereas the `fmt::Show` trait does not require any
allocations.
Closes#8242Closes#9806
One of the most common ways to use the stdin stream is to read it line by line
for a small program. In order to facilitate this common usage pattern, this
commit changes the stdin() function to return a BufferedReader by default. A new
`stdin_raw()` method was added to get access to the raw unbuffered stream.
I have not changed the stdout or stderr methods because they are currently
unable to flush in their destructor, but #12403 should have just fixed that.
This is in preparation to remove the implementations of ToStrRadix in integers, and to remove the associated logic from `std::num::strconv`.
The parts that still need to be liberated are:
- `std::fmt::Formatter::runplural`
- `num::{bigint, complex, rational}`
This "bubble up an error" macro was originally named if_ok! in order to get it
landed, but after the fact it was discovered that this name is not exactly
desirable.
The name `if_ok!` isn't immediately clear that is has much to do with error
handling, and it doesn't look fantastic in all contexts (if if_ok!(...) {}). In
general, the agreed opinion about `if_ok!` is that is came in as subpar.
The name `try!` is more invocative of error handling, it's shorter by 2 letters,
and it looks fitting in almost all circumstances. One concern about the word
`try!` is that it's too invocative of exceptions, but the belief is that this
will be overcome with documentation and examples.
Close#12037
One of the most common ways to use the stdin stream is to read it line by line
for a small program. In order to facilitate this common usage pattern, this
commit changes the stdin() function to return a BufferedReader by default. A new
`stdin_raw()` method was added to get access to the raw unbuffered stream.
I have not changed the stdout or stderr methods because they are currently
unable to flush in their destructor, but #12403 should have just fixed that.
This adopts the rules posted in #10432:
1. If a seek position is negative, then an error is generated
2. Seeks beyond the end-of-file are allowed. Future writes will fill the gap
with data and future reads will return errors.
3. Seeks within the bounds of a file are fine.
Closes#10432
This adopts the rules posted in #10432:
1. If a seek position is negative, then an error is generated
2. Seeks beyond the end-of-file are allowed. Future writes will fill the gap
with data and future reads will return errors.
3. Seeks within the bounds of a file are fine.
Closes#10432
* All I/O now returns IoResult<T> = Result<T, IoError>
* All formatting traits now return fmt::Result = IoResult<()>
* The if_ok!() macro was added to libstd
These are either returned from public functions, and really should
appear in the documentation, but don't since they're private, or are
implementation details that are currently public.
These are either returned from public functions, and really should
appear in the documentation, but don't since they're private, or are
implementation details that are currently public.
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
cc #11119
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
The `print!` and `println!` macros are now the preferred method of printing, and so there is no reason to export the `stdio` functions in the prelude. The functions have also been replaced by their macro counterparts in the tutorial and other documentation so that newcomers don't get confused about what they should be using.
This is just an unnecessary trait that no one's ever going to parameterize over
and it's more useful to just define the methods directly on the types
themselves. The implementors of this type almost always don't want
inner_mut_ref() but they're forced to define it as well.
These methods are sorely needed on readers and writers, and I believe that the
encoding story should be solved with composition. This commit adds back the
missed functions when reading/writing strings onto generic Readers/Writers.
All tests except for the homing tests are now working again with the
librustuv/libgreen refactoring. The homing-related tests are currently commented
out and now placed in the rustuv::homing module.
I plan on refactoring scheduler pool spawning in order to enable more homing
tests in a future commit.
This commit introduces a new crate called "native" which will be the crate that
implements the 1:1 runtime of rust. This currently entails having an
implementation of std::rt::Runtime inside of libnative as well as moving all of
the native I/O implementations to libnative.
The current snag is that the start lang item must currently be defined in
libnative in order to start running, but this will change in the future.
Cool fact about this crate, there are no extra features that are enabled.
Note that this commit does not include any makefile support necessary for
building libnative, that's all coming in a later commit.
This adds a bunch of useful Reader and Writer implementations. I'm not a
huge fan of the name `util` but I can't think of a better name and I
don't want to make `std::io` any longer than it already is.
This adds a bunch of useful Reader and Writer implementations. I'm not a
huge fan of the name `util` but I can't think of a better name and I
don't want to make `std::io` any longer than it already is.
- `Buffer.lines()` returns `LineIterator` which yields line using
`.read_line()`.
- `Reader.bytes()` now takes `&mut self` instead of `self`.
- `Reader.read_until()` swallows `EndOfFile`. This also affects
`.read_line()`.
This reverts commit c54427ddfb.
Leave the #[ignores] in that were added to rustpkg tests.
Conflicts:
src/librustc/driver/driver.rs
src/librustc/metadata/creader.rs