Stop read+write expressions from expanding into two occurences
in the AST. Add a bool to indicate whether an operand in output
position if read+write or not.
Fixes#14936
These `where` clauses are accepted everywhere generics are currently
accepted and desugar during type collection to the type parameter bounds
we have today.
A new keyword, `where`, has been added. Therefore, this is a breaking
change. Change uses of `where` to other identifiers.
[breaking-change]
methods.
This paves the way to associated items by introducing an extra level of
abstraction ("impl-or-trait item") between traits/implementations and
methods. This new abstraction is encoded in the metadata and used
throughout the compiler where appropriate.
There are no functional changes; this is purely a refactoring.
This patch primarily does two things: (1) it prevents lifetimes from
leaking out of unboxed closures; (2) it allows unboxed closure type
notation, call notation, and construction notation to construct closures
matching any of the three traits.
This breaks code that looked like:
let mut f;
{
let x = &5i;
f = |&mut:| *x + 10;
}
Change this code to avoid having a reference escape. For example:
{
let x = &5i;
let mut f; // <-- move here to avoid dangling reference
f = |&mut:| *x + 10;
}
I believe this is enough to consider unboxed closures essentially
implemented. Further issues (for example, higher-rank lifetimes) should
be filed as followups.
Closes#14449.
[breaking-change]
by-reference upvars.
This partially implements RFC 38. A snapshot will be needed to turn this
on, because stage0 cannot yet parse the keyword.
Part of #12381.
meaning `'b outlives 'a`. Syntax currently does nothing but is needed for full
fix to #5763. To use this syntax, the issue_5763_bootstrap feature guard is
required.
Prior to this, the code there had a few issues:
- Default implementations inconsistently either had the prefix `noop_` or
not.
- Some default methods where implemented in terms of a public noop function
for user code to call, others where implemented directly on the trait
and did not allow users of the trait to reuse the code.
- Some of the default implementations where private, and thus not reusable
for other implementors.
- There where some bugs where default implementations called other default
implementations directly, rather than to the underlying Folder, with the
result of some AST nodes never being visited even if the user implemented that
method. (For example, the current Folder never folded struct fields)
This commit solves this situation somewhat radically by making _all_
`fold_...` functions in the module into Folder methods, and implementing
them all in terms of public `noop_...` functions for other implementors to
call out to.
Some public functions had to be renamed to fit the new system, so this is a
breaking change.
[breaking-change]
This eliminates the last vestige of the `~` syntax.
Instead of `~self`, write `self: Box<TypeOfSelf>`; instead of `mut
~self`, write `mut self: Box<TypeOfSelf>`, replacing `TypeOfSelf` with
the self-type parameter as specified in the implementation.
Closes#13885.
[breaking-change]
In f1ad425199b0d89dab275a8c8f6f29a73d316f70, I changed the handling
of macros, to prevent macro invocations from occurring in fully expanded
source. Instead, I added a side table. It contained only the
spans of the macros, because this was the only information required
in order to make macro export work.
However, librustdoc was also affected by this change, since it
extracts macro information in a similar way. As a result of the earlier
change, exported macros were no longer documented.
In order to repair this, I've adjusted the side table to contain whole
items, rather than just the spans.
except where trait objects are involved.
Part of issue #15349, though I'm leaving it open for trait objects.
Cross borrowing for trait objects remains because it is needed until we
have DST.
This will break code like:
fn foo(x: &int) { ... }
let a = box 3i;
foo(a);
Change this code to:
fn foo(x: &int) { ... }
let a = box 3i;
foo(&*a);
[breaking-change]
This makes two changes to region inference: (1) it allows region
inference to relate early-bound regions; and (2) it allows regions to be
related before variance runs. The former is needed because there is no
relation between the two regions before region substitution happens,
while the latter is needed because type collection has to run before
variance. We assume that, before variance is inferred, that lifetimes
are invariant. This is a conservative overapproximation.
This relates to #13885. This does not remove `~self` from the language
yet, however.
[breaking-change]
This change propagates to many locations, but because of the
Macro Exterminator (or, more properly, the invariant that it
protects), macro invocations can't occur downstream of expansion.
This means that in librustc and librustdoc, extracting the
desired field can simply assume that it can't be a macro
invocation. Functions in ast_util abstract over this check.
macros can expand into arbitrary items, exprs, etc. This
means that using a default walker or folder on an AST before
macro expansion is complete will miss things (the things that
the macros expand into). As a partial fence against this, this
commit moves the default traversal of macros into a separate
procedure, and makes the default trait implementation signal
an error. This means that Folders and Visitors can traverse
macros if they want to, but they need to explicitly add an
impl that calls the walk_mac or fold_mac procedure
This should prevent problems down the road.
Per discussion with @sfackler, refactored the expander to
change the way that exported macros are collected. Specifically,
a crate now contains a side table of spans that exported macros
go into.
This has two benefits. First, the encoder doesn't need to scan through
the expanded crate in order to discover exported macros. Second, the
expander can drop all expanded macros from the crate, with the pleasant
result that a fully expanded crate contains no macro invocations (which
include macro definitions).
formerly, the self identifier was being discarded during parsing, which
stymies hygiene. The best fix here seems to be to attach a self identifier
to ExplicitSelf_, a change that rippled through the rest of the compiler,
but without any obvious damage.
This updates https://github.com/rust-lang/rust/pull/15075.
Rename `ToStr::to_str` to `ToString::to_string`. The naive renaming ends up with two `to_string` functions defined on strings in the prelude (the other defined via `collections::str::StrAllocating`). To remedy this I removed `StrAllocating::to_string`, making all conversions from `&str` to `String` go through `Show`. This has a measurable impact on the speed of this conversion, but the sense I get from others is that it's best to go ahead and unify `to_string` and address performance for all `to_string` conversions in `core::fmt`. `String::from_str(...)` still works as a manual fast-path.
Note that the patch was done with a script, and ended up renaming a number of other `*_to_str` functions, particularly inside of rustc. All the ones I saw looked correct, and I didn't notice any additional API breakage.
Closes#15046.
closes#13367
[breaking-change] Use `Sized?` to indicate a dynamically sized type parameter or trait (used to be `type`). E.g.,
```
trait Tr for Sized? {}
fn foo<Sized? X: Share>(x: X) {}
```
Rationale: for what appear to be historical reasons only, the PatIdent contains
a Path rather than an Ident. This means that there are many places in the code
where an ident is artificially promoted to a path, and---much more problematically---
a bunch of elements from a path are simply thrown away, which seems like an invitation
to some really nasty bugs.
This commit replaces the Path in a PatIdent with a SpannedIdent, which just contains an ident
and a span.
This removes all remnants of `@` pointers from rustc. Additionally, this removes
the `GC` structure from the prelude as it seems odd exporting an experimental
type in the prelude by default.
Closes#14193
[breaking-change]
RFC #27.
After a snapshot, the old syntax will be removed.
This can break some code that looked like `foo as &Trait:Send`. Now you
will need to write `foo as (&Trait+Send)`.
Closes#12778.
[breaking-change]
All of these features have been obsolete since February 2014, where most have
been obsolete since 2013. There shouldn't be any more need to keep around the
parser hacks after this length of time.
This PR is primarily motivated by (and fixes) #12926.
We currently only have a span for the individual item itself and not for the referred contents. This normally does not cause a problem since both are located in the same file; it *is* possible that the contained statement or item is located in the other file (the syntax extension can do that), but even in that case the syntax extension should be located in the same file as the item. The module item (i.e. `mod foo;`) is the only exception here, and thus warrants a special treatment.
Rustdoc would now distinguish `mod foo;` from `mod foo {...}` by checking if the span for the module item and module contents is in different files. If it's the case, we'd prefer module contents over module item. There are alternative strategies, but as noted above we will have some corner cases if we don't record the contents span explicitly.
this is useful when the module item and module contents are defined
from different files (like rustdoc). in most cases the original span
for the module item would be used; in other cases, the span for
module contents is available separately at the `inner` field.
it reflected the obsolete syntax `use a, b, c;` and did not make
past the parser (though it was a non-fatal error so we can continue).
this legacy affected many portions of rustc and rustdoc as well,
so this commit cleans them up altogether.
Specifically, the method parameter cardinality mismatch or missing
method error message span now gets method itself exactly. It was the
whole expression.
Closes#9390Closes#13684Closes#13709
Specifically, the method parameter cardinality mismatch or missing
method error message span now gets method itself exactly. It was the
whole expression.
Closes#9390Closes#13684Closes#13709