rust/src/libsyntax/fold.rs
Patrick Walton 9b9ef44233 libsyntax: Allow + to separate trait bounds from objects.
RFC #27.

After a snapshot, the old syntax will be removed.

This can break some code that looked like `foo as &Trait:Send`. Now you
will need to write `foo as (&Trait+Send)`.

Closes #12778.

[breaking-change]
2014-06-13 13:53:34 -07:00

1010 lines
35 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use ast::*;
use ast;
use ast_util;
use codemap::{respan, Span, Spanned};
use parse::token;
use owned_slice::OwnedSlice;
use util::small_vector::SmallVector;
use std::rc::Rc;
use std::gc::Gc;
// We may eventually want to be able to fold over type parameters, too.
pub trait Folder {
fn fold_crate(&mut self, c: Crate) -> Crate {
noop_fold_crate(c, self)
}
fn fold_meta_items(&mut self, meta_items: &[Gc<MetaItem>]) -> Vec<Gc<MetaItem>> {
meta_items.iter().map(|x| fold_meta_item_(*x, self)).collect()
}
fn fold_view_path(&mut self, view_path: Gc<ViewPath>) -> Gc<ViewPath> {
let inner_view_path = match view_path.node {
ViewPathSimple(ref ident, ref path, node_id) => {
let id = self.new_id(node_id);
ViewPathSimple(ident.clone(),
self.fold_path(path),
id)
}
ViewPathGlob(ref path, node_id) => {
let id = self.new_id(node_id);
ViewPathGlob(self.fold_path(path), id)
}
ViewPathList(ref path, ref path_list_idents, node_id) => {
let id = self.new_id(node_id);
ViewPathList(self.fold_path(path),
path_list_idents.iter().map(|path_list_ident| {
let id = self.new_id(path_list_ident.node
.id);
Spanned {
node: PathListIdent_ {
name: path_list_ident.node
.name
.clone(),
id: id,
},
span: self.new_span(
path_list_ident.span)
}
}).collect(),
id)
}
};
box(GC) Spanned {
node: inner_view_path,
span: self.new_span(view_path.span),
}
}
fn fold_view_item(&mut self, vi: &ViewItem) -> ViewItem {
noop_fold_view_item(vi, self)
}
fn fold_foreign_item(&mut self, ni: Gc<ForeignItem>) -> Gc<ForeignItem> {
noop_fold_foreign_item(&*ni, self)
}
fn fold_item(&mut self, i: Gc<Item>) -> SmallVector<Gc<Item>> {
noop_fold_item(&*i, self)
}
fn fold_struct_field(&mut self, sf: &StructField) -> StructField {
let id = self.new_id(sf.node.id);
Spanned {
node: ast::StructField_ {
kind: sf.node.kind,
id: id,
ty: self.fold_ty(sf.node.ty),
attrs: sf.node.attrs.iter().map(|e| fold_attribute_(*e, self)).collect()
},
span: self.new_span(sf.span)
}
}
fn fold_item_underscore(&mut self, i: &Item_) -> Item_ {
noop_fold_item_underscore(i, self)
}
fn fold_fn_decl(&mut self, d: &FnDecl) -> P<FnDecl> {
noop_fold_fn_decl(d, self)
}
fn fold_type_method(&mut self, m: &TypeMethod) -> TypeMethod {
noop_fold_type_method(m, self)
}
fn fold_method(&mut self, m: Gc<Method>) -> Gc<Method> {
noop_fold_method(&*m, self)
}
fn fold_block(&mut self, b: P<Block>) -> P<Block> {
noop_fold_block(b, self)
}
fn fold_stmt(&mut self, s: &Stmt) -> SmallVector<Gc<Stmt>> {
noop_fold_stmt(s, self)
}
fn fold_arm(&mut self, a: &Arm) -> Arm {
Arm {
attrs: a.attrs.iter().map(|x| fold_attribute_(*x, self)).collect(),
pats: a.pats.iter().map(|x| self.fold_pat(*x)).collect(),
guard: a.guard.map(|x| self.fold_expr(x)),
body: self.fold_expr(a.body),
}
}
fn fold_pat(&mut self, p: Gc<Pat>) -> Gc<Pat> {
noop_fold_pat(p, self)
}
fn fold_decl(&mut self, d: Gc<Decl>) -> SmallVector<Gc<Decl>> {
let node = match d.node {
DeclLocal(ref l) => SmallVector::one(DeclLocal(self.fold_local(*l))),
DeclItem(it) => {
self.fold_item(it).move_iter().map(|i| DeclItem(i)).collect()
}
};
node.move_iter().map(|node| {
box(GC) Spanned {
node: node,
span: self.new_span(d.span),
}
}).collect()
}
fn fold_expr(&mut self, e: Gc<Expr>) -> Gc<Expr> {
noop_fold_expr(e, self)
}
fn fold_ty(&mut self, t: P<Ty>) -> P<Ty> {
let id = self.new_id(t.id);
let node = match t.node {
TyNil | TyBot | TyInfer => t.node.clone(),
TyBox(ty) => TyBox(self.fold_ty(ty)),
TyUniq(ty) => TyUniq(self.fold_ty(ty)),
TyVec(ty) => TyVec(self.fold_ty(ty)),
TyPtr(ref mt) => TyPtr(fold_mt(mt, self)),
TyRptr(ref region, ref mt) => {
TyRptr(fold_opt_lifetime(region, self), fold_mt(mt, self))
}
TyClosure(ref f, ref region) => {
TyClosure(box(GC) ClosureTy {
fn_style: f.fn_style,
onceness: f.onceness,
bounds: fold_opt_bounds(&f.bounds, self),
decl: self.fold_fn_decl(&*f.decl),
lifetimes: f.lifetimes.iter().map(|l| self.fold_lifetime(l)).collect(),
}, fold_opt_lifetime(region, self))
}
TyProc(ref f) => {
TyProc(box(GC) ClosureTy {
fn_style: f.fn_style,
onceness: f.onceness,
bounds: fold_opt_bounds(&f.bounds, self),
decl: self.fold_fn_decl(&*f.decl),
lifetimes: f.lifetimes.iter().map(|l| self.fold_lifetime(l)).collect(),
})
}
TyBareFn(ref f) => {
TyBareFn(box(GC) BareFnTy {
lifetimes: f.lifetimes.iter().map(|l| self.fold_lifetime(l)).collect(),
fn_style: f.fn_style,
abi: f.abi,
decl: self.fold_fn_decl(&*f.decl)
})
}
TyUnboxedFn(ref f) => {
TyUnboxedFn(box(GC) UnboxedFnTy {
decl: self.fold_fn_decl(&*f.decl),
})
}
TyTup(ref tys) => TyTup(tys.iter().map(|&ty| self.fold_ty(ty)).collect()),
TyParen(ref ty) => TyParen(self.fold_ty(*ty)),
TyPath(ref path, ref bounds, id) => {
let id = self.new_id(id);
TyPath(self.fold_path(path),
fold_opt_bounds(bounds, self),
id)
}
TyFixedLengthVec(ty, e) => {
TyFixedLengthVec(self.fold_ty(ty), self.fold_expr(e))
}
TyTypeof(expr) => TyTypeof(self.fold_expr(expr)),
};
P(Ty {
id: id,
span: self.new_span(t.span),
node: node,
})
}
fn fold_mod(&mut self, m: &Mod) -> Mod {
noop_fold_mod(m, self)
}
fn fold_foreign_mod(&mut self, nm: &ForeignMod) -> ForeignMod {
ast::ForeignMod {
abi: nm.abi,
view_items: nm.view_items
.iter()
.map(|x| self.fold_view_item(x))
.collect(),
items: nm.items
.iter()
.map(|x| self.fold_foreign_item(*x))
.collect(),
}
}
fn fold_variant(&mut self, v: &Variant) -> P<Variant> {
let id = self.new_id(v.node.id);
let kind;
match v.node.kind {
TupleVariantKind(ref variant_args) => {
kind = TupleVariantKind(variant_args.iter().map(|x|
fold_variant_arg_(x, self)).collect())
}
StructVariantKind(ref struct_def) => {
kind = StructVariantKind(box(GC) ast::StructDef {
fields: struct_def.fields.iter()
.map(|f| self.fold_struct_field(f)).collect(),
ctor_id: struct_def.ctor_id.map(|c| self.new_id(c)),
super_struct: match struct_def.super_struct {
Some(t) => Some(self.fold_ty(t)),
None => None
},
is_virtual: struct_def.is_virtual,
})
}
}
let attrs = v.node.attrs.iter().map(|x| fold_attribute_(*x, self)).collect();
let de = match v.node.disr_expr {
Some(e) => Some(self.fold_expr(e)),
None => None
};
let node = ast::Variant_ {
name: v.node.name,
attrs: attrs,
kind: kind,
id: id,
disr_expr: de,
vis: v.node.vis,
};
P(Spanned {
node: node,
span: self.new_span(v.span),
})
}
fn fold_ident(&mut self, i: Ident) -> Ident {
i
}
fn fold_path(&mut self, p: &Path) -> Path {
ast::Path {
span: self.new_span(p.span),
global: p.global,
segments: p.segments.iter().map(|segment| ast::PathSegment {
identifier: self.fold_ident(segment.identifier),
lifetimes: segment.lifetimes.iter().map(|l| self.fold_lifetime(l)).collect(),
types: segment.types.iter().map(|&typ| self.fold_ty(typ)).collect(),
}).collect()
}
}
fn fold_local(&mut self, l: Gc<Local>) -> Gc<Local> {
let id = self.new_id(l.id); // Needs to be first, for ast_map.
box(GC) Local {
id: id,
ty: self.fold_ty(l.ty),
pat: self.fold_pat(l.pat),
init: l.init.map(|e| self.fold_expr(e)),
span: self.new_span(l.span),
source: l.source,
}
}
fn fold_mac(&mut self, macro: &Mac) -> Mac {
Spanned {
node: match macro.node {
MacInvocTT(ref p, ref tts, ctxt) => {
MacInvocTT(self.fold_path(p),
fold_tts(tts.as_slice(), self),
ctxt)
}
},
span: self.new_span(macro.span)
}
}
fn map_exprs(&self, f: |Gc<Expr>| -> Gc<Expr>,
es: &[Gc<Expr>]) -> Vec<Gc<Expr>> {
es.iter().map(|x| f(*x)).collect()
}
fn new_id(&mut self, i: NodeId) -> NodeId {
i
}
fn new_span(&mut self, sp: Span) -> Span {
sp
}
fn fold_explicit_self(&mut self, es: &ExplicitSelf) -> ExplicitSelf {
Spanned {
span: self.new_span(es.span),
node: self.fold_explicit_self_(&es.node)
}
}
fn fold_explicit_self_(&mut self, es: &ExplicitSelf_) -> ExplicitSelf_ {
match *es {
SelfStatic | SelfValue | SelfUniq => *es,
SelfRegion(ref lifetime, m) => {
SelfRegion(fold_opt_lifetime(lifetime, self), m)
}
}
}
fn fold_lifetime(&mut self, l: &Lifetime) -> Lifetime {
noop_fold_lifetime(l, self)
}
}
/* some little folds that probably aren't useful to have in Folder itself*/
//used in noop_fold_item and noop_fold_crate and noop_fold_crate_directive
fn fold_meta_item_<T: Folder>(mi: Gc<MetaItem>, fld: &mut T) -> Gc<MetaItem> {
box(GC) Spanned {
node:
match mi.node {
MetaWord(ref id) => MetaWord((*id).clone()),
MetaList(ref id, ref mis) => {
MetaList((*id).clone(), mis.iter().map(|e| fold_meta_item_(*e, fld)).collect())
}
MetaNameValue(ref id, ref s) => {
MetaNameValue((*id).clone(), (*s).clone())
}
},
span: fld.new_span(mi.span) }
}
//used in noop_fold_item and noop_fold_crate
fn fold_attribute_<T: Folder>(at: Attribute, fld: &mut T) -> Attribute {
Spanned {
span: fld.new_span(at.span),
node: ast::Attribute_ {
id: at.node.id,
style: at.node.style,
value: fold_meta_item_(at.node.value, fld),
is_sugared_doc: at.node.is_sugared_doc
}
}
}
//used in noop_fold_foreign_item and noop_fold_fn_decl
fn fold_arg_<T: Folder>(a: &Arg, fld: &mut T) -> Arg {
let id = fld.new_id(a.id); // Needs to be first, for ast_map.
Arg {
id: id,
ty: fld.fold_ty(a.ty),
pat: fld.fold_pat(a.pat),
}
}
// build a new vector of tts by appling the Folder's fold_ident to
// all of the identifiers in the token trees.
//
// This is part of hygiene magic. As far as hygiene is concerned, there
// are three types of let pattern bindings or loop labels:
// - those defined and used in non-macro part of the program
// - those used as part of macro invocation arguments
// - those defined and used inside macro definitions
// Lexically, type 1 and 2 are in one group and type 3 the other. If they
// clash, in order for let and loop label to work hygienically, one group
// or the other needs to be renamed. The problem is that type 2 and 3 are
// parsed together (inside the macro expand function). After being parsed and
// AST being constructed, they can no longer be distinguished from each other.
//
// For that reason, type 2 let bindings and loop labels are actually renamed
// in the form of tokens instead of AST nodes, here. There are wasted effort
// since many token::IDENT are not necessary part of let bindings and most
// token::LIFETIME are certainly not loop labels. But we can't tell in their
// token form. So this is less ideal and hacky but it works.
pub fn fold_tts<T: Folder>(tts: &[TokenTree], fld: &mut T) -> Vec<TokenTree> {
tts.iter().map(|tt| {
match *tt {
TTTok(span, ref tok) =>
TTTok(span,maybe_fold_ident(tok,fld)),
TTDelim(ref tts) => TTDelim(Rc::new(fold_tts(tts.as_slice(), fld))),
TTSeq(span, ref pattern, ref sep, is_optional) =>
TTSeq(span,
Rc::new(fold_tts(pattern.as_slice(), fld)),
sep.as_ref().map(|tok|maybe_fold_ident(tok,fld)),
is_optional),
TTNonterminal(sp,ref ident) =>
TTNonterminal(sp,fld.fold_ident(*ident))
}
}).collect()
}
// apply ident folder if it's an ident, otherwise leave it alone
fn maybe_fold_ident<T: Folder>(t: &token::Token, fld: &mut T) -> token::Token {
match *t {
token::IDENT(id, followed_by_colons) => {
token::IDENT(fld.fold_ident(id), followed_by_colons)
}
token::LIFETIME(id) => token::LIFETIME(fld.fold_ident(id)),
_ => (*t).clone()
}
}
pub fn noop_fold_fn_decl<T: Folder>(decl: &FnDecl, fld: &mut T) -> P<FnDecl> {
P(FnDecl {
inputs: decl.inputs.iter().map(|x| fold_arg_(x, fld)).collect(), // bad copy
output: fld.fold_ty(decl.output),
cf: decl.cf,
variadic: decl.variadic
})
}
fn fold_ty_param_bound<T: Folder>(tpb: &TyParamBound, fld: &mut T)
-> TyParamBound {
match *tpb {
TraitTyParamBound(ref ty) => TraitTyParamBound(fold_trait_ref(ty, fld)),
StaticRegionTyParamBound => StaticRegionTyParamBound,
UnboxedFnTyParamBound(ref unboxed_function_type) => {
UnboxedFnTyParamBound(UnboxedFnTy {
decl: fld.fold_fn_decl(&*unboxed_function_type.decl),
})
}
OtherRegionTyParamBound(s) => OtherRegionTyParamBound(s)
}
}
pub fn fold_ty_param<T: Folder>(tp: &TyParam, fld: &mut T) -> TyParam {
let id = fld.new_id(tp.id);
TyParam {
ident: tp.ident,
id: id,
sized: tp.sized,
bounds: tp.bounds.map(|x| fold_ty_param_bound(x, fld)),
default: tp.default.map(|x| fld.fold_ty(x)),
span: tp.span
}
}
pub fn fold_ty_params<T: Folder>(tps: &OwnedSlice<TyParam>, fld: &mut T)
-> OwnedSlice<TyParam> {
tps.map(|tp| fold_ty_param(tp, fld))
}
pub fn noop_fold_lifetime<T: Folder>(l: &Lifetime, fld: &mut T) -> Lifetime {
let id = fld.new_id(l.id);
Lifetime {
id: id,
span: fld.new_span(l.span),
name: l.name
}
}
pub fn fold_lifetimes<T: Folder>(lts: &Vec<Lifetime>, fld: &mut T)
-> Vec<Lifetime> {
lts.iter().map(|l| fld.fold_lifetime(l)).collect()
}
pub fn fold_opt_lifetime<T: Folder>(o_lt: &Option<Lifetime>, fld: &mut T)
-> Option<Lifetime> {
o_lt.as_ref().map(|lt| fld.fold_lifetime(lt))
}
pub fn fold_generics<T: Folder>(generics: &Generics, fld: &mut T) -> Generics {
Generics {ty_params: fold_ty_params(&generics.ty_params, fld),
lifetimes: fold_lifetimes(&generics.lifetimes, fld)}
}
fn fold_struct_def<T: Folder>(struct_def: Gc<StructDef>,
fld: &mut T) -> Gc<StructDef> {
box(GC) ast::StructDef {
fields: struct_def.fields.iter().map(|f| fold_struct_field(f, fld)).collect(),
ctor_id: struct_def.ctor_id.map(|cid| fld.new_id(cid)),
super_struct: match struct_def.super_struct {
Some(t) => Some(fld.fold_ty(t)),
None => None
},
is_virtual: struct_def.is_virtual,
}
}
fn fold_trait_ref<T: Folder>(p: &TraitRef, fld: &mut T) -> TraitRef {
let id = fld.new_id(p.ref_id);
ast::TraitRef {
path: fld.fold_path(&p.path),
ref_id: id,
}
}
fn fold_struct_field<T: Folder>(f: &StructField, fld: &mut T) -> StructField {
let id = fld.new_id(f.node.id);
Spanned {
node: ast::StructField_ {
kind: f.node.kind,
id: id,
ty: fld.fold_ty(f.node.ty),
attrs: f.node.attrs.iter().map(|a| fold_attribute_(*a, fld)).collect(),
},
span: fld.new_span(f.span),
}
}
fn fold_field_<T: Folder>(field: Field, folder: &mut T) -> Field {
ast::Field {
ident: respan(field.ident.span, folder.fold_ident(field.ident.node)),
expr: folder.fold_expr(field.expr),
span: folder.new_span(field.span),
}
}
fn fold_mt<T: Folder>(mt: &MutTy, folder: &mut T) -> MutTy {
MutTy {
ty: folder.fold_ty(mt.ty),
mutbl: mt.mutbl,
}
}
fn fold_opt_bounds<T: Folder>(b: &Option<OwnedSlice<TyParamBound>>, folder: &mut T)
-> Option<OwnedSlice<TyParamBound>> {
b.as_ref().map(|bounds| {
bounds.map(|bound| {
fold_ty_param_bound(bound, folder)
})
})
}
fn fold_variant_arg_<T: Folder>(va: &VariantArg, folder: &mut T) -> VariantArg {
let id = folder.new_id(va.id);
ast::VariantArg {
ty: folder.fold_ty(va.ty),
id: id,
}
}
pub fn noop_fold_view_item<T: Folder>(vi: &ViewItem, folder: &mut T)
-> ViewItem{
let inner_view_item = match vi.node {
ViewItemExternCrate(ref ident, ref string, node_id) => {
ViewItemExternCrate(ident.clone(),
(*string).clone(),
folder.new_id(node_id))
}
ViewItemUse(ref view_path) => {
ViewItemUse(folder.fold_view_path(*view_path))
}
};
ViewItem {
node: inner_view_item,
attrs: vi.attrs.iter().map(|a| fold_attribute_(*a, folder)).collect(),
vis: vi.vis,
span: folder.new_span(vi.span),
}
}
pub fn noop_fold_block<T: Folder>(b: P<Block>, folder: &mut T) -> P<Block> {
let id = folder.new_id(b.id); // Needs to be first, for ast_map.
let view_items = b.view_items.iter().map(|x| folder.fold_view_item(x)).collect();
let stmts = b.stmts.iter().flat_map(|s| folder.fold_stmt(&**s).move_iter()).collect();
P(Block {
id: id,
view_items: view_items,
stmts: stmts,
expr: b.expr.map(|x| folder.fold_expr(x)),
rules: b.rules,
span: folder.new_span(b.span),
})
}
pub fn noop_fold_item_underscore<T: Folder>(i: &Item_, folder: &mut T) -> Item_ {
match *i {
ItemStatic(t, m, e) => {
ItemStatic(folder.fold_ty(t), m, folder.fold_expr(e))
}
ItemFn(decl, fn_style, abi, ref generics, body) => {
ItemFn(
folder.fold_fn_decl(&*decl),
fn_style,
abi,
fold_generics(generics, folder),
folder.fold_block(body)
)
}
ItemMod(ref m) => ItemMod(folder.fold_mod(m)),
ItemForeignMod(ref nm) => ItemForeignMod(folder.fold_foreign_mod(nm)),
ItemTy(t, ref generics) => {
ItemTy(folder.fold_ty(t), fold_generics(generics, folder))
}
ItemEnum(ref enum_definition, ref generics) => {
ItemEnum(
ast::EnumDef {
variants: enum_definition.variants.iter().map(|&x| {
folder.fold_variant(&*x)
}).collect(),
},
fold_generics(generics, folder))
}
ItemStruct(ref struct_def, ref generics) => {
let struct_def = fold_struct_def(*struct_def, folder);
ItemStruct(struct_def, fold_generics(generics, folder))
}
ItemImpl(ref generics, ref ifce, ty, ref methods) => {
ItemImpl(fold_generics(generics, folder),
ifce.as_ref().map(|p| fold_trait_ref(p, folder)),
folder.fold_ty(ty),
methods.iter().map(|x| folder.fold_method(*x)).collect()
)
}
ItemTrait(ref generics, ref sized, ref traits, ref methods) => {
let methods = methods.iter().map(|method| {
match *method {
Required(ref m) => Required(folder.fold_type_method(m)),
Provided(method) => Provided(folder.fold_method(method))
}
}).collect();
ItemTrait(fold_generics(generics, folder),
*sized,
traits.iter().map(|p| fold_trait_ref(p, folder)).collect(),
methods)
}
ItemMac(ref m) => ItemMac(folder.fold_mac(m)),
}
}
pub fn noop_fold_type_method<T: Folder>(m: &TypeMethod, fld: &mut T) -> TypeMethod {
let id = fld.new_id(m.id); // Needs to be first, for ast_map.
TypeMethod {
id: id,
ident: fld.fold_ident(m.ident),
attrs: m.attrs.iter().map(|a| fold_attribute_(*a, fld)).collect(),
fn_style: m.fn_style,
decl: fld.fold_fn_decl(&*m.decl),
generics: fold_generics(&m.generics, fld),
explicit_self: fld.fold_explicit_self(&m.explicit_self),
span: fld.new_span(m.span),
vis: m.vis,
}
}
pub fn noop_fold_mod<T: Folder>(m: &Mod, folder: &mut T) -> Mod {
ast::Mod {
inner: folder.new_span(m.inner),
view_items: m.view_items
.iter()
.map(|x| folder.fold_view_item(x)).collect(),
items: m.items.iter().flat_map(|x| folder.fold_item(*x).move_iter()).collect(),
}
}
pub fn noop_fold_crate<T: Folder>(c: Crate, folder: &mut T) -> Crate {
Crate {
module: folder.fold_mod(&c.module),
attrs: c.attrs.iter().map(|x| fold_attribute_(*x, folder)).collect(),
config: c.config.iter().map(|x| fold_meta_item_(*x, folder)).collect(),
span: folder.new_span(c.span),
}
}
pub fn noop_fold_item<T: Folder>(i: &Item,
folder: &mut T) -> SmallVector<Gc<Item>> {
let id = folder.new_id(i.id); // Needs to be first, for ast_map.
let node = folder.fold_item_underscore(&i.node);
let ident = match node {
// The node may have changed, recompute the "pretty" impl name.
ItemImpl(_, ref maybe_trait, ty, _) => {
ast_util::impl_pretty_name(maybe_trait, &*ty)
}
_ => i.ident
};
SmallVector::one(box(GC) Item {
id: id,
ident: folder.fold_ident(ident),
attrs: i.attrs.iter().map(|e| fold_attribute_(*e, folder)).collect(),
node: node,
vis: i.vis,
span: folder.new_span(i.span)
})
}
pub fn noop_fold_foreign_item<T: Folder>(ni: &ForeignItem,
folder: &mut T) -> Gc<ForeignItem> {
let id = folder.new_id(ni.id); // Needs to be first, for ast_map.
box(GC) ForeignItem {
id: id,
ident: folder.fold_ident(ni.ident),
attrs: ni.attrs.iter().map(|x| fold_attribute_(*x, folder)).collect(),
node: match ni.node {
ForeignItemFn(ref fdec, ref generics) => {
ForeignItemFn(P(FnDecl {
inputs: fdec.inputs.iter().map(|a| fold_arg_(a, folder)).collect(),
output: folder.fold_ty(fdec.output),
cf: fdec.cf,
variadic: fdec.variadic
}), fold_generics(generics, folder))
}
ForeignItemStatic(t, m) => {
ForeignItemStatic(folder.fold_ty(t), m)
}
},
span: folder.new_span(ni.span),
vis: ni.vis,
}
}
pub fn noop_fold_method<T: Folder>(m: &Method, folder: &mut T) -> Gc<Method> {
let id = folder.new_id(m.id); // Needs to be first, for ast_map.
box(GC) Method {
id: id,
ident: folder.fold_ident(m.ident),
attrs: m.attrs.iter().map(|a| fold_attribute_(*a, folder)).collect(),
generics: fold_generics(&m.generics, folder),
explicit_self: folder.fold_explicit_self(&m.explicit_self),
fn_style: m.fn_style,
decl: folder.fold_fn_decl(&*m.decl),
body: folder.fold_block(m.body),
span: folder.new_span(m.span),
vis: m.vis
}
}
pub fn noop_fold_pat<T: Folder>(p: Gc<Pat>, folder: &mut T) -> Gc<Pat> {
let id = folder.new_id(p.id);
let node = match p.node {
PatWild => PatWild,
PatWildMulti => PatWildMulti,
PatIdent(binding_mode, ref pth, ref sub) => {
PatIdent(binding_mode,
folder.fold_path(pth),
sub.map(|x| folder.fold_pat(x)))
}
PatLit(e) => PatLit(folder.fold_expr(e)),
PatEnum(ref pth, ref pats) => {
PatEnum(folder.fold_path(pth),
pats.as_ref().map(|pats| pats.iter().map(|x| folder.fold_pat(*x)).collect()))
}
PatStruct(ref pth, ref fields, etc) => {
let pth_ = folder.fold_path(pth);
let fs = fields.iter().map(|f| {
ast::FieldPat {
ident: f.ident,
pat: folder.fold_pat(f.pat)
}
}).collect();
PatStruct(pth_, fs, etc)
}
PatTup(ref elts) => PatTup(elts.iter().map(|x| folder.fold_pat(*x)).collect()),
PatBox(inner) => PatBox(folder.fold_pat(inner)),
PatRegion(inner) => PatRegion(folder.fold_pat(inner)),
PatRange(e1, e2) => {
PatRange(folder.fold_expr(e1), folder.fold_expr(e2))
},
PatVec(ref before, ref slice, ref after) => {
PatVec(before.iter().map(|x| folder.fold_pat(*x)).collect(),
slice.map(|x| folder.fold_pat(x)),
after.iter().map(|x| folder.fold_pat(*x)).collect())
}
PatMac(ref mac) => PatMac(folder.fold_mac(mac)),
};
box(GC) Pat {
id: id,
span: folder.new_span(p.span),
node: node,
}
}
pub fn noop_fold_expr<T: Folder>(e: Gc<Expr>, folder: &mut T) -> Gc<Expr> {
let id = folder.new_id(e.id);
let node = match e.node {
ExprVstore(e, v) => {
ExprVstore(folder.fold_expr(e), v)
}
ExprBox(p, e) => {
ExprBox(folder.fold_expr(p), folder.fold_expr(e))
}
ExprVec(ref exprs) => {
ExprVec(exprs.iter().map(|&x| folder.fold_expr(x)).collect())
}
ExprRepeat(expr, count) => {
ExprRepeat(folder.fold_expr(expr), folder.fold_expr(count))
}
ExprTup(ref elts) => ExprTup(elts.iter().map(|x| folder.fold_expr(*x)).collect()),
ExprCall(f, ref args) => {
ExprCall(folder.fold_expr(f),
args.iter().map(|&x| folder.fold_expr(x)).collect())
}
ExprMethodCall(i, ref tps, ref args) => {
ExprMethodCall(
respan(i.span, folder.fold_ident(i.node)),
tps.iter().map(|&x| folder.fold_ty(x)).collect(),
args.iter().map(|&x| folder.fold_expr(x)).collect())
}
ExprBinary(binop, lhs, rhs) => {
ExprBinary(binop,
folder.fold_expr(lhs),
folder.fold_expr(rhs))
}
ExprUnary(binop, ohs) => {
ExprUnary(binop, folder.fold_expr(ohs))
}
ExprLit(_) => e.node.clone(),
ExprCast(expr, ty) => {
ExprCast(folder.fold_expr(expr), folder.fold_ty(ty))
}
ExprAddrOf(m, ohs) => ExprAddrOf(m, folder.fold_expr(ohs)),
ExprIf(cond, tr, fl) => {
ExprIf(folder.fold_expr(cond),
folder.fold_block(tr),
fl.map(|x| folder.fold_expr(x)))
}
ExprWhile(cond, body) => {
ExprWhile(folder.fold_expr(cond), folder.fold_block(body))
}
ExprForLoop(pat, iter, body, ref maybe_ident) => {
ExprForLoop(folder.fold_pat(pat),
folder.fold_expr(iter),
folder.fold_block(body),
maybe_ident.map(|i| folder.fold_ident(i)))
}
ExprLoop(body, opt_ident) => {
ExprLoop(folder.fold_block(body),
opt_ident.map(|x| folder.fold_ident(x)))
}
ExprMatch(expr, ref arms) => {
ExprMatch(folder.fold_expr(expr),
arms.iter().map(|x| folder.fold_arm(x)).collect())
}
ExprFnBlock(ref decl, ref body) => {
ExprFnBlock(folder.fold_fn_decl(&**decl),
folder.fold_block(body.clone()))
}
ExprProc(ref decl, ref body) => {
ExprProc(folder.fold_fn_decl(&**decl),
folder.fold_block(body.clone()))
}
ExprBlock(ref blk) => ExprBlock(folder.fold_block(blk.clone())),
ExprAssign(el, er) => {
ExprAssign(folder.fold_expr(el), folder.fold_expr(er))
}
ExprAssignOp(op, el, er) => {
ExprAssignOp(op,
folder.fold_expr(el),
folder.fold_expr(er))
}
ExprField(el, id, ref tys) => {
ExprField(folder.fold_expr(el),
folder.fold_ident(id),
tys.iter().map(|&x| folder.fold_ty(x)).collect())
}
ExprIndex(el, er) => {
ExprIndex(folder.fold_expr(el), folder.fold_expr(er))
}
ExprPath(ref pth) => ExprPath(folder.fold_path(pth)),
ExprBreak(opt_ident) => ExprBreak(opt_ident.map(|x| folder.fold_ident(x))),
ExprAgain(opt_ident) => ExprAgain(opt_ident.map(|x| folder.fold_ident(x))),
ExprRet(ref e) => {
ExprRet(e.map(|x| folder.fold_expr(x)))
}
ExprInlineAsm(ref a) => {
ExprInlineAsm(InlineAsm {
inputs: a.inputs.iter().map(|&(ref c, input)| {
((*c).clone(), folder.fold_expr(input))
}).collect(),
outputs: a.outputs.iter().map(|&(ref c, out)| {
((*c).clone(), folder.fold_expr(out))
}).collect(),
.. (*a).clone()
})
}
ExprMac(ref mac) => ExprMac(folder.fold_mac(mac)),
ExprStruct(ref path, ref fields, maybe_expr) => {
ExprStruct(folder.fold_path(path),
fields.iter().map(|x| fold_field_(*x, folder)).collect(),
maybe_expr.map(|x| folder.fold_expr(x)))
},
ExprParen(ex) => ExprParen(folder.fold_expr(ex))
};
box(GC) Expr {
id: id,
node: node,
span: folder.new_span(e.span),
}
}
pub fn noop_fold_stmt<T: Folder>(s: &Stmt,
folder: &mut T) -> SmallVector<Gc<Stmt>> {
let nodes = match s.node {
StmtDecl(d, id) => {
let id = folder.new_id(id);
folder.fold_decl(d).move_iter()
.map(|d| StmtDecl(d, id))
.collect()
}
StmtExpr(e, id) => {
let id = folder.new_id(id);
SmallVector::one(StmtExpr(folder.fold_expr(e), id))
}
StmtSemi(e, id) => {
let id = folder.new_id(id);
SmallVector::one(StmtSemi(folder.fold_expr(e), id))
}
StmtMac(ref mac, semi) => SmallVector::one(StmtMac(folder.fold_mac(mac), semi))
};
nodes.move_iter().map(|node| box(GC) Spanned {
node: node,
span: folder.new_span(s.span),
}).collect()
}
#[cfg(test)]
mod test {
use std::io;
use ast;
use util::parser_testing::{string_to_crate, matches_codepattern};
use parse::token;
use print::pprust;
use super::*;
// this version doesn't care about getting comments or docstrings in.
fn fake_print_crate(s: &mut pprust::State,
krate: &ast::Crate) -> io::IoResult<()> {
s.print_mod(&krate.module, krate.attrs.as_slice())
}
// change every identifier to "zz"
struct ToZzIdentFolder;
impl Folder for ToZzIdentFolder {
fn fold_ident(&mut self, _: ast::Ident) -> ast::Ident {
token::str_to_ident("zz")
}
}
// maybe add to expand.rs...
macro_rules! assert_pred (
($pred:expr, $predname:expr, $a:expr , $b:expr) => (
{
let pred_val = $pred;
let a_val = $a;
let b_val = $b;
if !(pred_val(a_val.as_slice(),b_val.as_slice())) {
fail!("expected args satisfying {}, got {:?} and {:?}",
$predname, a_val, b_val);
}
}
)
)
// make sure idents get transformed everywhere
#[test] fn ident_transformation () {
let mut zz_fold = ToZzIdentFolder;
let ast = string_to_crate(
"#[a] mod b {fn c (d : e, f : g) {h!(i,j,k);l;m}}".to_string());
let folded_crate = zz_fold.fold_crate(ast);
assert_pred!(
matches_codepattern,
"matches_codepattern",
pprust::to_str(|s| fake_print_crate(s, &folded_crate)),
"#[a]mod zz{fn zz(zz:zz,zz:zz){zz!(zz,zz,zz);zz;zz}}".to_string());
}
// even inside macro defs....
#[test] fn ident_transformation_in_defs () {
let mut zz_fold = ToZzIdentFolder;
let ast = string_to_crate(
"macro_rules! a {(b $c:expr $(d $e:token)f+ => \
(g $(d $d $e)+))} ".to_string());
let folded_crate = zz_fold.fold_crate(ast);
assert_pred!(
matches_codepattern,
"matches_codepattern",
pprust::to_str(|s| fake_print_crate(s, &folded_crate)),
"zz!zz((zz$zz:zz$(zz $zz:zz)zz+=>(zz$(zz$zz$zz)+)))".to_string());
}
}