Instead of trying to collect tokens at each depth, we 'flatten' the
stream as we go allong, pushing open/close delimiters to our buffer
just like regular tokens. One capturing is complete, we reconstruct a
nested `TokenTree::Delimited` structure, producing a normal
`TokenStream`.
The reconstructed `TokenStream` is not created immediately - instead, it is
produced on-demand by a closure (wrapped in a new `LazyTokenStream` type). This
closure stores a clone of the original `TokenCursor`, plus a record of the
number of calls to `next()/next_desugared()`. This is sufficient to reconstruct
the tokenstream seen by the callback without storing any additional state. If
the tokenstream is never used (e.g. when a captured `macro_rules!` argument is
never passed to a proc macro), we never actually create a `TokenStream`.
This implementation has a number of advantages over the previous one:
* It is significantly simpler, with no edge cases around capturing the
start/end of a delimited group.
* It can be easily extended to allow replacing tokens an an arbitrary
'depth' by just using `Vec::splice` at the proper position. This is
important for PR #76130, which requires us to track information about
attributes along with tokens.
* The lazy approach to `TokenStream` construction allows us to easily
parse an AST struct, and then decide after the fact whether we need a
`TokenStream`. This will be useful when we start collecting tokens for
`Attribute` - we can discard the `LazyTokenStream` if the parsed
attribute doesn't need tokens (e.g. is a builtin attribute).
The performance impact seems to be neglibile (see
https://github.com/rust-lang/rust/pull/77250#issuecomment-703960604). There is a
small slowdown on a few benchmarks, but it only rises above 1% for incremental
builds, where it represents a larger fraction of the much smaller instruction
count. There a ~1% speedup on a few other incremental benchmarks - my guess is
that the speedups and slowdowns will usually cancel out in practice.
Rollup of 4 pull requests
Successful merges:
- #77877 (Use `try{}` in `try_fold` to decouple iterators in the library from `Try` details)
- #78089 (Fix issue with specifying generic arguments for primitive types)
- #78099 (Add missing punctuation)
- #78103 (Add link to rustdoc book in rustdoc help popup)
Failed merges:
r? `@ghost`
Try to make ObligationForest more efficient
This PR tries to decrease the number of allocations in ObligationForest, as well as moves some cold path code to an uninlined function.
Move `slice::check_range` to `RangeBounds`
Since this method doesn't take a slice anymore (#76662), it makes more sense to define it on `RangeBounds`.
Questions:
- Should the new method be `assert_len` or `assert_length`?
normalize substs while inlining
fixes#68347 or more precisely, this fixes the same ICE in rust analyser as veloren is pinned to a specific nightly
and had an error with the current one.
I didn't look into creating an MVCE here as that seems fairly annoying, will spend a few minutes doing so rn. (failed)
r? `@eddyb` cc `@bjorn3`
Make sure arenas don't allocate bigger than HUGE_PAGE
Right now, arenas allocate based on the size of the last chunk. It is possible for a `grow` call to allocate a chunk that is not a multiple of `PAGE`, and this size is doubled for each subsequent allocation. This means, instead of `HUGE_PAGE`, the biggest page possible is actually unknown.
This change fixes this, and also removes an unnecessary checked multiplication. It is still possible to allocate bigger than `HUGE_PAGE` pages, but this will only happen as many times as absolutely necessary.
Make set_span take mut self
This was a mistake in https://github.com/rust-lang/rust/pull/77614
It's not a _huge_ deal, because backends can always implement this with interior mutability, but it's nice to avoid interior mutability when possible. For context, the `set_source_location` method, called alongside `set_span`, also takes `&mut self`.
r? `@eddyb`
For example, if you had this code:
fn foo(x: i32, y: f32) -> f32 {
x * y
}
You would get this error:
error[E0277]: cannot multiply `f32` to `i32`
--> src/lib.rs:2:7
|
2 | x * y
| ^ no implementation for `i32 * f32`
|
= help: the trait `Mul<f32>` is not implemented for `i32`
However, that's not usually how people describe multiplication. People
usually describe multiplication like how the division error words it:
error[E0277]: cannot divide `i32` by `f32`
--> src/lib.rs:2:7
|
2 | x / y
| ^ no implementation for `i32 / f32`
|
= help: the trait `Div<f32>` is not implemented for `i32`
So that's what this change does. It changes this:
error[E0277]: cannot multiply `f32` to `i32`
--> src/lib.rs:2:7
|
2 | x * y
| ^ no implementation for `i32 * f32`
|
= help: the trait `Mul<f32>` is not implemented for `i32`
To this:
error[E0277]: cannot multiply `i32` by `f32`
--> src/lib.rs:2:7
|
2 | x * y
| ^ no implementation for `i32 * f32`
|
= help: the trait `Mul<f32>` is not implemented for `i32`