Add Integer::log variants
_This is another attempt at landing https://github.com/rust-lang/rust/pull/70835, which was approved by the libs team but failed on Android tests through Bors. The text copied here is from the original issue. The only change made so far is the addition of non-`checked_` variants of the log methods._
_Tracking issue: #70887_
---
This implements `{log,log2,log10}` methods for all integer types. The implementation was provided by `@substack` for use in the stdlib.
_Note: I'm not big on math, so this PR is a best effort written with limited knowledge. It's likely I'll be getting things wrong, but happy to learn and correct. Please bare with me._
## Motivation
Calculating the logarithm of a number is a generally useful operation. Currently the stdlib only provides implementations for floats, which means that if we want to calculate the logarithm for an integer we have to cast it to a float and then back to an int.
> would be nice if there was an integer log2 instead of having to either use the f32 version or leading_zeros() which i have to verify the results of every time to be sure
_— [`@substack,` 2020-03-08](https://twitter.com/substack/status/1236445105197727744)_
At higher numbers converting from an integer to a float we also risk overflows. This means that Rust currently only provides log operations for a limited set of integers.
The process of doing log operations by converting between floats and integers is also prone to rounding errors. In the following example we're trying to calculate `base10` for an integer. We might try and calculate the `base2` for the values, and attempt [a base swap](https://www.rapidtables.com/math/algebra/Logarithm.html#log-rules) to arrive at `base10`. However because we're performing intermediate rounding we arrive at the wrong result:
```rust
// log10(900) = ~2.95 = 2
dbg!(900f32.log10() as u64);
// log base change rule: logb(x) = logc(x) / logc(b)
// log2(900) / log2(10) = 9/3 = 3
dbg!((900f32.log2() as u64) / (10f32.log2() as u64));
```
_[playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=6bd6c68b3539e400f9ca4fdc6fc2eed0)_
This is somewhat nuanced as a lot of the time it'll work well, but in real world code this could lead to some hard to track bugs. By providing correct log implementations directly on integers we can help prevent errors around this.
## Implementation notes
I checked whether LLVM intrinsics existed before implementing this, and none exist yet. ~~Also I couldn't really find a better way to write the `ilog` function. One option would be to make it a private method on the number, but I didn't see any precedent for that. I also didn't know where to best place the tests, so I added them to the bottom of the file. Even though they might seem like quite a lot they take no time to execute.~~
## References
- [Log rules](https://www.rapidtables.com/math/algebra/Logarithm.html#log-rules)
- [Rounding error playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=6bd6c68b3539e400f9ca4fdc6fc2eed0)
- [substack's tweet asking about integer log2 in the stdlib](https://twitter.com/substack/status/1236445105197727744)
- [Integer Logarithm, A. Jaffer 2008](https://people.csail.mit.edu/jaffer/III/ilog.pdf)
core: add unstable no_fp_fmt_parse to disable float formatting code
In some projects (e.g. kernel), floating point is forbidden. They can disable
hardware floating point support and use `+soft-float` to avoid fp instructions
from being generated, but as libcore contains the formatting code for `f32`
and `f64`, some fp intrinsics are depended. One could define stubs for these
intrinsics that just panic [1], but it means that if any formatting functions
are accidentally used, mistake can only be caught during the runtime rather
than during compile-time or link-time, and they consume a lot of space without
LTO.
This patch provides an unstable cfg `no_fp_fmt_parse` to disable these.
A panicking stub is still provided for the `Debug` implementation (unfortunately)
because there are some SIMD types that use `#[derive(Debug)]`.
[1]: https://lkml.org/lkml/2021/4/14/1028
This was unsound since a panic in a.next_back() would result in the
length not being updated which would then lead to the same element
being revisited in the side-effect preserving code.
to_digit simplification (less jumps)
I just realised we might be able to make use of the fact that changing case in ascii is easy to help simplify to_digit some more.
It looks a bit cleaner and it looks like it's less jumps and there's less instructions in the generated assembly:
https://godbolt.org/z/84Erh5dhz
The benchmarks don't really tell me much. Maybe a slight improvement on the var radix.
Before:
```
test char::methods::bench_to_digit_radix_10 ... bench: 53,819 ns/iter (+/- 8,314)
test char::methods::bench_to_digit_radix_16 ... bench: 57,265 ns/iter (+/- 10,730)
test char::methods::bench_to_digit_radix_2 ... bench: 55,077 ns/iter (+/- 5,431)
test char::methods::bench_to_digit_radix_36 ... bench: 56,549 ns/iter (+/- 3,248)
test char::methods::bench_to_digit_radix_var ... bench: 43,848 ns/iter (+/- 3,189)
test char::methods::bench_to_digit_radix_10 ... bench: 51,707 ns/iter (+/- 10,946)
test char::methods::bench_to_digit_radix_16 ... bench: 52,835 ns/iter (+/- 2,689)
test char::methods::bench_to_digit_radix_2 ... bench: 51,012 ns/iter (+/- 2,746)
test char::methods::bench_to_digit_radix_36 ... bench: 53,210 ns/iter (+/- 8,645)
test char::methods::bench_to_digit_radix_var ... bench: 40,386 ns/iter (+/- 4,711)
test char::methods::bench_to_digit_radix_10 ... bench: 54,088 ns/iter (+/- 5,677)
test char::methods::bench_to_digit_radix_16 ... bench: 55,972 ns/iter (+/- 17,229)
test char::methods::bench_to_digit_radix_2 ... bench: 52,083 ns/iter (+/- 2,425)
test char::methods::bench_to_digit_radix_36 ... bench: 54,132 ns/iter (+/- 1,548)
test char::methods::bench_to_digit_radix_var ... bench: 41,250 ns/iter (+/- 5,299)
```
After:
```
test char::methods::bench_to_digit_radix_10 ... bench: 48,907 ns/iter (+/- 19,449)
test char::methods::bench_to_digit_radix_16 ... bench: 52,673 ns/iter (+/- 8,122)
test char::methods::bench_to_digit_radix_2 ... bench: 48,509 ns/iter (+/- 2,885)
test char::methods::bench_to_digit_radix_36 ... bench: 50,526 ns/iter (+/- 4,610)
test char::methods::bench_to_digit_radix_var ... bench: 38,618 ns/iter (+/- 3,180)
test char::methods::bench_to_digit_radix_10 ... bench: 54,202 ns/iter (+/- 6,994)
test char::methods::bench_to_digit_radix_16 ... bench: 56,585 ns/iter (+/- 8,448)
test char::methods::bench_to_digit_radix_2 ... bench: 50,548 ns/iter (+/- 1,674)
test char::methods::bench_to_digit_radix_36 ... bench: 52,749 ns/iter (+/- 2,576)
test char::methods::bench_to_digit_radix_var ... bench: 40,215 ns/iter (+/- 3,327)
test char::methods::bench_to_digit_radix_10 ... bench: 50,233 ns/iter (+/- 22,272)
test char::methods::bench_to_digit_radix_16 ... bench: 50,841 ns/iter (+/- 19,981)
test char::methods::bench_to_digit_radix_2 ... bench: 50,386 ns/iter (+/- 4,555)
test char::methods::bench_to_digit_radix_36 ... bench: 52,369 ns/iter (+/- 2,737)
test char::methods::bench_to_digit_radix_var ... bench: 40,417 ns/iter (+/- 2,766)
```
I removed the likely as it resulted in a few less instructions. (It's not been in there long - I added it in the last to_digit iteration).
Make copy/copy_nonoverlapping fn's again
Make copy/copy_nonoverlapping fn's again, rather than intrinsics.
This a short-term change to address issue #84297.
It effectively reverts PRs #81167#81238 (and part of #82967), #83091, and parts of #79684.
Update standard library for IntoIterator implementation of arrays
This PR partially resolves issue #84513 of updating the standard library part.
I haven't found any remaining doctest examples which are using iterators over e.g. &i32 instead of just i32 in the standard library. Can anyone point me to them if there's remaining any?
Thanks!
r? ```@m-ou-se```
While stdlib implementations of the unchecked methods require unchecked
math, there is no reason to gate it behind this for external users. The
reasoning for a separate `step_trait_ext` feature is unclear, and as
such has been merged as well.
Implement indexing slices with pairs of core::ops::Bound<usize>
Closes#49976.
I am not sure about code duplication between `check_range` and `into_maybe_range`. Should be former implemented in terms of the latter? Also this PR doesn't address code duplication between `impl SliceIndex for Range*`.
Format `Struct { .. }` on one line even with `{:#?}`.
The result of `debug_struct("A").finish_non_exhaustive()` before this change:
```
A {
..
}
```
And after this change:
```
A { .. }
```
If there's any fields, the result stays unchanged:
```
A {
field: value,
..
}
Stabilize `peekable_peek_mut`
Resolves#78302. Also adds some documentation on `std::iter::Iterator::peekable()` regarding the new method.
The feature was added in #77491 in Nov' 20, which is recently, but the feature seems reasonably small. Never did a stabilization-pr, excuse my ignorance if there is a protocol I'm not aware of.
Stabilize cmp_min_max_by
I would like to propose cmp::{min_by, min_by_key, max_by, max_by_key}
for stabilization.
These are relatively simple and seemingly uncontroversial functions and
have been unchanged in unstable for a while now.
Closes: #64460
I would like to propose cmp::{min_by, min_by_key, max_by, max_by_key}
for stabilization.
These are relatively simple and seemingly uncontroversial functions and
have been unchanged in unstable for a while now.