This wasn't a right decision in the first place, the feature flag was
broken in the last rustfmt release, and syntax highlighting of imports
is more important anyway
1477: Update vsce to 1.64.0 r=matklad a=kjeremy
Gets rid of the annoying warning asking you to run `npm install -g vsce` on `cargo install`.
Co-authored-by: kjeremy <kjeremy@gmail.com>
1458: Run VS Code tests on CI r=matklad a=etaoins
This is actually much faster than I expected; it takes about 13 seconds to download VS Code and run the unit tests. This means the VS Code tests are still significantly faster than the Rust ones.
If this ends up being unreliable we can always remove it later or move it to a separate optional job.
We also need to ignore the `.vscode-test` directory when running `prettier` or it will get upset about some temporary JSON files VS Code creates.
cc @killercup
Co-authored-by: Ryan Cumming <etaoins@gmail.com>
1461: Support attributes on array members r=matklad a=etaoins
Array members are allowed to have attributes such as `#[cfg]`.
Co-authored-by: Ryan Cumming <etaoins@gmail.com>
1459: Include primary span label in VS Code diagnostics r=matklad a=etaoins
In most cases the primary label span repeats information found elsewhere in the diagnostic. For example, with E0061:
```json
{
"message": "this function takes 2 parameters but 3 parameters were supplied",
"spans": [{"label": "expected 2 parameters"}]
}
```
However, with some mismatched type errors (E0308) the expected type only appears in the primary span's label, e.g.:
```json
{
"message": "mismatched types",
"spans": [{"label": "expected usize, found u32"}]
}
```
I initially added the primary span label to the message unconditionally. However, for most error types the child diagnostics repeat the primary span label with more detail. `rustc` also renders the duplicate text but because the span label and child diagnostics appear in visually distinct places it's not as confusing.
This takes a heuristic approach where it will only add the primary span label if there are no child message lines. For most error types the child messages repeat the primary span label with more detail.
Co-authored-by: Ryan Cumming <etaoins@gmail.com>
Array members are allow to have attributes such as `#[cfg]`.
This is a bit tricky as we don't know if the first expression is an
initializer or a member until we encounter a `;`. This reuses a trick
from `stmt` where we remember if we saw an attribute and then raise an
error if the first expression ends up being an initializer.
This isn't perfect as the error isn't correctly located on the attribute
or initializer; it ends up immediately after the `;`.
This adds `unreachable_code` to the list of diagnostic codes we map to
`Unnecessary` in Visual Studio Code. This is consistent with what the
TypeScript language server does.
In most cases the primary label span repeats information found elsewhere
in the diagnostic. For example, with E0061:
```
{
"message": "this function takes 2 parameters but 3 parameters were supplied",
"spans": [{"label": "expected 2 parameters"}]
}
```
However, with some mismatched type errors (E0308) the expected type only
appears in the primary span's label, e.g.:
```
{
"message": "mismatched types",
"spans": [{"label": "expected usize, found u32"}]
}
```
I initially added the primary span label to the message unconditionally.
However, for most error types the child diagnostics repeat the primary
span label with more detail. `rustc` also renders the duplicate text but
because the span label and child diagnostics appear in visually distinct
places it's not as confusing.
This takes a heuristic approach where it will only add the primary span
label if there are no child message lines.
This is actually much faster than I expected; it takes about 13 seconds
to download VS Code and run the unit tests. This means the VS Code tests
are still significantly faster than the Rust ones.
If this ends up being unreliable we can always remove it later or move
it to a separate optional job.
We also need to ignore the `.vscode-test` directory when running
`prettier` or it will get upset about some temporary JSON files VS Code
creates.
1456: Deduplicate method candidates r=matklad a=flodiebold
With trait method completion + autoderef, we were getting a lot of duplicates, which was really annoying...
Co-authored-by: Florian Diebold <flodiebold@gmail.com>
1457: Complete associated methods on enums (and unions) as well r=matklad a=flodiebold
This has been seriously annoying me for a while ;)
Co-authored-by: Florian Diebold <flodiebold@gmail.com>
1454: Fix `cargo watch` code action filtering r=etaoins a=etaoins
There are two issues with the implementation of `provideCodeActions` introduced in #1439:
1. We're returning the code action based on the file its diagnostic is in; not the file the suggested fix is in. I'm not sure how often fixes are suggested cross-file but it's something we should handle.
2. We're not filtering code actions based on the passed range. The means if there is any suggestion in a file we'll show an action for every line of the file. I naively thought that VS Code would filter for us but that was wrong.
Unfortunately the VS Code `CodeAction` object is very complex - it can handle edits across multiple files, run commands, etc. This makes it complex to check them for equality or see if any of their edits intersects with a specified range.
To make it easier to work with suggestions this introduces a `SuggestedFix` model object and a `SuggestFixCollection` code action provider. This is a layer between the raw Rust JSON and VS Code's `CodeAction`s. I was reluctant to introduce another layer of abstraction here but my attempt to work directly with VS Code's model objects was worse.
Co-authored-by: Ryan Cumming <etaoins@gmail.com>
1455: Add noUnusedLocals to VsCode tsconfig r=matklad a=etaoins
`tslint` doesn't catch this because TypeScript has had this check builtin since 2.9. However, it's disabled by default so right now nothing is checking for unused variables.
Co-authored-by: Ryan Cumming <etaoins@gmail.com>
`tslint` doesn't catch this because TypeScript has had this check
builtin since 2.9. However, it's disabled by default so right now
nothing is checking for unused variables.
There are two issues with the implementation of `provideCodeActions`
introduced in #1439:
1. We're returning the code action based on the file its diagnostic is
in; not the file the suggested fix is in. I'm not sure how often
fixes are suggested cross-file but it's something we should handle.
2. We're not filtering code actions based on the passed range. The means
if there is any suggestion in a file we'll show an action for every
line of the file. I naively thought that VS Code would filter for us
but that was wrong.
Unfortunately the VS Code `CodeAction` object is very complex - it can
handle edits across multiple files, run commands, etc. This makes it
complex to check them for equality or see if any of their edits
intersects with a specified range.
To make it easier to work with suggestions this introduces a
`SuggestedFix` model object and a `SuggestFixCollection` code action
provider. This is a layer between the raw Rust JSON and VS Code's
`CodeAction`s. I was reluctant to introduce another layer of abstraction
here but my attempt to work directly with VS Code's model objects was
worse.
1453: Add show syntax tree function to emacs r=matklad a=zbelial
This PR adds preliminary support for showing syntax tree.
Co-authored-by: zbelial <zjytj@qq.com>
1450: Extract lint scopes from `cargo watch` r=matklad a=etaoins
Currently all of our VS Code diagnostics are given the source of `rustc`. However, if you have something like `cargo-watch.command` set to `clippy` it will also watch for Clippy lints. The `rustc` source is a bit misleading in that case.
Fortunately, Rust's tool lints ([RFC 2103](https://github.com/rust-lang/rfcs/blob/master/text/2103-tool-attributes.md)) line up perfectly with VS Code's concept of `source`. This checks for lints scoped to a given tool and then splits them in to a `source` and tool-specific `code`.
Co-authored-by: Ryan Cumming <etaoins@gmail.com>
1449: Swallow expected `rustfmt` errors r=matklad a=etaoins
My workflow in Visual Studio Code + Rust Analyzer has become:
1. Make a change to Rust source code using all the analysis magic
2. Save the file to trigger `cargo watch`. I have format on save enabled for all file types so this also runs `rustfmt`
3. Fix any diagnostics that `cargo watch` finds
Unfortunately if the Rust source has any syntax errors the act of saving will pop up a scary "command has failed" message and will switch to the "Output" tab to show the `rustfmt` error and exit code.
I did a quick survey of what other Language Servers do in this case. Both the JSON and TypeScript servers will swallow the error and return success. This is consistent with how I remember my workflow in those languages. The syntax error will show up as a diagnostic so it should be clear why the file isn't formatting.
I checked the `rustfmt` source code and while it does distinguish "parse errors" from "operational errors" internally they both result in exit status of 1. However, more catastrophic errors (missing `rustfmt`, SIGSEGV, etc) will return 127+ error codes which we can distinguish from a normal failure.
This changes our handler to log an info message and feign success if `rustfmt` exits with status 1.
Another option I considered was only swallowing the error if the formatting request came from format-on-save. However, the Language Server Protocol doesn't seem to distinguish those cases.
Co-authored-by: Ryan Cumming <etaoins@gmail.com>
Currently all of our VS Code diagnostics are given the source of
`rustc`. However, if you have something like `cargo-watch.command` set
to `clippy` it will also watch for Clippy lints. The `rustc` source is a
bit misleading in that case.
Fortunately, Rust's tool lints (RFC 2103) line up perfectly with VS
Code's concept of `source`. This checks for lints scoped to a given tool
and then splits them in to a `source` and tool-specific `code`.