Diagnostics such as the following
```
mismatched types: expected `core::result::Result<uint,()>`, found `core::option::Option<<generic #1>>`
<anon>:6 let a: Result<uint, ()> = None;
^~~~
mismatched types: expected `&mut <generic #2>`, found `uint`
<anon>:7 f(42u);
^~~
```
tend to be fairly unappealing to new users. While specific type var IDs are valuable in
diagnostics that deal with more than one such variable, in practice many messages
only mention one. In those cases, leaving out the specific number makes the messages
slightly less terrifying.
In addition, type variables have been changed to use the type hole syntax `_` in diagnostics.
With a variable ID, they're printed as `_#id` (e.g. `_#1`). In cases where the ID is left out,
it's simply `_`. Integer and float variables have an additional suffix after the number, e.g.
`_#1i` or `_#3f`.
This includes updating the language items and marking what needs to
change after a snapshot.
If you do not use the standard library, the language items you need to
implement have changed. For example:
```rust
#[lang = "fail_fmt"] fn fail_fmt() -> ! { loop {} }
```
is now
```rust
#[lang = "panic_fmt"] fn panic_fmt() -> ! { loop {} }
```
Related, lesser-implemented language items `fail` and
`fail_bounds_check` have become `panic` and `panic_bounds_check`, as
well. These are implemented by `libcore`, so it is unlikely (though
possible!) that these two renamings will affect you.
[breaking-change]
Fix test suite
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]
This reverts commit c245c5bbad10923b47c9f66d5f0da2913ef11a38.
Parallel code generation generates invalid code for librand, which is
caught by recent versions of binutils.
This reverts commit c245c5bbad10923b47c9f66d5f0da2913ef11a38.
Parallel code generation generates invalid code for librand, which is
caught by recent versions of binutils.
This adds a `Substs` field to `ty_unboxed_closure` and plumbs basic
handling of it throughout the compiler. trans now correctly
monomorphizes captured free variables and llvm function defs. This
fixes uses of unboxed closures which reference a free type or region
parameter from their environment in either their signature or free
variables. Closes#16791
Use the `is_shorthand` field introduced by #17813 (ead6c4b) to make the
prettyprinter output the shorthand form. Fixes a few places that set
`is_shorthand: true` when the pattern is not a PatIdent with the same
name as the field.
- Correctly categorize env pointer deref for `FnMut` as declared
rather than inherited. This fixes an assert in borrowck.
Closes#18238
- Categorize env pointer deref as mutable only if the closure is
`FnMut` *and* the original variable is declared mutable. This
disallows capture-by-value `FnMut` closures from mutating captured
variables that aren't declared mutable. This is a difference
from the equivalent desugared code which would permit it, but
it is consistent with the behavior of procs. Closes#18335
- Avoid computing info about the env pointer if there isn't one.
Rather than doing it top-down, with a known expected type, we will now simply establish the appropriate constraints between the pattern and the expression it destructures.
Closes#8783.
Closes#10200.
Adds an `assume` intrinsic that gets translated to llvm.assume. It is
used on a boolean expression and allows the optimizer to assume that
the expression is true.
This implements #18051.
Instead of checking patterns in a top-down fashion with a known
expected type on entry, this changes makes typeck establish
appropriate constraints between a pattern and the expression
it destructures, and lets inference compute the final types
or produce good error messages if it's impossible.
This reverts commit a0ec902e239b2219edf1a18b036dd32c18d3be42 "Avoid
unnecessary temporary on assignments".
Leaving out the temporary for the functions return value can lead to a
situation that conflicts with rust's aliasing rules.
Given this:
````rust
fn func(f: &mut Foo) -> Foo { /* ... */ }
fn bar() {
let mut foo = Foo { /* ... */ };
foo = func(&mut foo);
}
````
We effectively get two mutable references to the same variable `foo` at
the same time. One for the parameter `f`, and one for the hidden
out-pointer. So we can't just `trans_into` the destination directly, but
must use `trans` to get a new temporary slot from which the result can
be copied.
Enable parallel codegen (2 units) by default when --opt-level is 0 or 1. This
gives a minor speedup on large crates (~10%), with only a tiny slowdown (~2%)
for small ones (which usually build in under a second regardless). The current
default (no parallelization) is used when the user requests optimization
(--opt-level 2 or 3), and when the user has enabled LTO (which is incompatible
with parallel codegen).
This commit also changes the rust build system to use parallel codegen
when appropriate. This means codegen-units=4 for stage0 always, and
also for stage1 and stage2 when configured with --disable-optimize.
(Other settings use codegen-units=1 for stage1 and stage2, to get
maximum performance for release binaries.) The build system also sets
codegen-units=1 for compiletest tests (compiletest does its own
parallelization) and uses the same setting as stage2 for crate tests.
r? @aturon
Enable parallel codegen (2 units) by default when --opt-level is 0 or 1. This
gives a minor speedup on large crates (~10%), with only a tiny slowdown (~2%)
for small ones (which usually build in under a second regardless). The current
default (no parallelization) is used when the user requests optimization
(--opt-level 2 or 3), and when the user has enabled LTO (which is incompatible
with parallel codegen).
This commit also changes the rust build system to use parallel codegen
when appropriate. This means codegen-units=4 for stage0 always, and
also for stage1 and stage2 when configured with --disable-optimize.
(Other settings use codegen-units=1 for stage1 and stage2, to get
maximum performance for release binaries.) The build system also sets
codegen-units=1 for compiletest tests (compiletest does its own
parallelization) and uses the same setting as stage2 for crate tests.