The purpose here is to get rid of compile_upto, which pretty much always requires the user to read the source to figure out what it does. It's replaced by a sequence of obviously-named functions:
- phase_1_parse_input(sess, cfg, input);
- phase_2_configure_and_expand(sess, cfg, crate);
- phase_3_run_analysis_passes(sess, expanded_crate);
- phase_4_translate_to_llvm(sess, expanded_crate, &analysis, outputs);
- phase_5_run_llvm_passes(sess, &trans, outputs);
- phase_6_link_output(sess, &trans, outputs);
Each of which takes what it takes and returns what it returns, with as little variation as possible in behaviour: no "pairs of options" and "pairs of control flags". You can tell if you missed a phase because you will be missing a `phase_N` call to some `N` between 1 and 6.
It does mean that people invoking librustc from outside need to write more function calls. The benefit is that they can _figure out what they're doing_ much more easily, and stop at any point, rather than further overloading the tangled logic of `compile_upto`.
As the title says, valid debug info is now generated for any kind of pattern-based bindings like an example from the automated tests:
```rust
let ((u, v), ((w, (x, Struct { a: y, b: z})), Struct { a: ae, b: oe }), ue) =
((25, 26), ((27, (28, Struct { a: 29, b: 30})), Struct { a: 31, b: 32 }), 33);
```
(Not that you would necessarily want to do a thing like that :P )
Fixes#2533
Until now, we only optimized away impossible branches when there is a
literal true/false in the code. But since the LLVM IR builder already does
constant folding for us, we can trivially expand that to work with
constants as well.
Refs #7834
Infers type of constants used as discriminants and ensures they are
integral, instead of forcing them to be a signed integer.
Also, stores discriminant values as uint instead of int interally and
deals with related fallout.
Fixes issue #7994
This is a cleanup pull request that does:
* removes `os::as_c_charp`
* moves `str::as_buf` and `str::as_c_str` into `StrSlice`
* converts some functions from `StrSlice::as_buf` to `StrSlice::as_c_str`
* renames `StrSlice::as_buf` to `StrSlice::as_imm_buf` (and adds `StrSlice::as_mut_buf` to match `vec.rs`.
* renames `UniqueStr::as_bytes_with_null_consume` to `UniqueStr::to_bytes`
* and other misc cleanups and minor optimizations
The code to build the transmute intrinsic currently makes the invalid
assumption that if the in-type is non-immediate, the out-type is
non-immediate as well. But this is wrong, for example when transmuting
[int, ..1] to int. So we need to handle this fourth case as well.
Fixes#7988
This allows for control over the section placement of static, static
mut, and fn items. One caveat is that if a static and a static mut are
placed in the same section, the static is declared first, and the static
mut is assigned to, the generated program crashes. For example:
#[link_section=".boot"]
static foo : uint = 0xdeadbeef;
#[link_section=".boot"]
static mut bar : uint = 0xcafebabe;
Declaring bar first would mark .bootdata as writable, preventing the
crash when bar is written to.
This allows for control over the section placement of static, static
mut, and fn items. One caveat is that if a static and a static mut are
placed in the same section, the static is declared first, and the static
mut is assigned to, the generated program crashes. For example:
#[link_section=".boot"]
static foo : uint = 0xdeadbeef;
#[link_section=".boot"]
static mut bar : uint = 0xcafebabe;
Declaring bar first would mark .bootdata as writable, preventing the
crash when bar is written to.
Continuation of https://github.com/mozilla/rust/pull/7826.
AST spanned<T> refactoring, AST type renamings:
`crate => Crate`
`local => Local`
`blk => Block`
`crate_num => CrateNum`
`crate_cfg => CrateConfig`
`field => Field`
Also, Crate, Field and Local are not wrapped in spanned<T> anymore.
`crate => Crate`
`local => Local`
`blk => Block`
`crate_num => CrateNum`
`crate_cfg => CrateConfig`
Also, Crate and Local are not wrapped in spanned<T> anymore.
These changes remove unnecessary basic blocks and the associated branches from
the LLVM IR that we emit. Together, they reduce the time for unoptimized builds
in stage2 by about 10% on my box.
These blocks were required because previously we could only insert
instructions at the end of blocks, but we wanted to have all allocas in
one place, so they can be collapse. But now we have "direct" access the
the LLVM IR builder and can position it freely. This allows us to use
the same trick that clang uses, which means that we insert a dummy
"marker" instruction to identify the spot at which we want to insert
allocas. We can then later position the IR builder at that spot and
insert the alloca instruction, without any dedicated block.
The block for loading the closure environment can now also go away,
because the function context now provides the toplevel block, and the
translation of the loading happens first, so that's good enough.
Makes the LLVM IR a bit more readable, saving a bunch of branches in the
unoptimized code, which benefits unoptimized builds.
Currently, the helper functions in the "build" module can only append
at the end of a block. For certain things we'll want to be able to
insert code at arbitrary locations inside a block though. Although can
we do that by directly calling the LLVM functions, that is rather ugly
and means that somethings need to be implemented twice. Once in terms
of the helper functions and once in terms of low level LLVM functions.
Instead of doing that, we should provide a Builder type that provides
low level access to the builder, and which can be used by both, the
helper functions in the "build" module, as well larger units of
abstractions that combine several LLVM instructions.