This adds a `Substs` field to `ty_unboxed_closure` and plumbs basic
handling of it throughout the compiler. trans now correctly
monomorphizes captured free variables and llvm function defs. This
fixes uses of unboxed closures which reference a free type or region
parameter from their environment in either their signature or free
variables. Closes#16791
The arenas write the value to memory and then return a non-aliasing
reference to it. The returned reference can be mutable and can be
coerced to an immutable one.
[breaking-change]
Use the `is_shorthand` field introduced by #17813 (ead6c4b) to make the
prettyprinter output the shorthand form. Fixes a few places that set
`is_shorthand: true` when the pattern is not a PatIdent with the same
name as the field.
- Correctly categorize env pointer deref for `FnMut` as declared
rather than inherited. This fixes an assert in borrowck.
Closes#18238
- Categorize env pointer deref as mutable only if the closure is
`FnMut` *and* the original variable is declared mutable. This
disallows capture-by-value `FnMut` closures from mutating captured
variables that aren't declared mutable. This is a difference
from the equivalent desugared code which would permit it, but
it is consistent with the behavior of procs. Closes#18335
- Avoid computing info about the env pointer if there isn't one.
Rather than doing it top-down, with a known expected type, we will now simply establish the appropriate constraints between the pattern and the expression it destructures.
Closes#8783.
Closes#10200.
Adds an `assume` intrinsic that gets translated to llvm.assume. It is
used on a boolean expression and allows the optimizer to assume that
the expression is true.
This implements #18051.
Instead of checking patterns in a top-down fashion with a known
expected type on entry, this changes makes typeck establish
appropriate constraints between a pattern and the expression
it destructures, and lets inference compute the final types
or produce good error messages if it's impossible.
This reverts commit a0ec902e239b2219edf1a18b036dd32c18d3be42 "Avoid
unnecessary temporary on assignments".
Leaving out the temporary for the functions return value can lead to a
situation that conflicts with rust's aliasing rules.
Given this:
````rust
fn func(f: &mut Foo) -> Foo { /* ... */ }
fn bar() {
let mut foo = Foo { /* ... */ };
foo = func(&mut foo);
}
````
We effectively get two mutable references to the same variable `foo` at
the same time. One for the parameter `f`, and one for the hidden
out-pointer. So we can't just `trans_into` the destination directly, but
must use `trans` to get a new temporary slot from which the result can
be copied.
Enable parallel codegen (2 units) by default when --opt-level is 0 or 1. This
gives a minor speedup on large crates (~10%), with only a tiny slowdown (~2%)
for small ones (which usually build in under a second regardless). The current
default (no parallelization) is used when the user requests optimization
(--opt-level 2 or 3), and when the user has enabled LTO (which is incompatible
with parallel codegen).
This commit also changes the rust build system to use parallel codegen
when appropriate. This means codegen-units=4 for stage0 always, and
also for stage1 and stage2 when configured with --disable-optimize.
(Other settings use codegen-units=1 for stage1 and stage2, to get
maximum performance for release binaries.) The build system also sets
codegen-units=1 for compiletest tests (compiletest does its own
parallelization) and uses the same setting as stage2 for crate tests.
r? @aturon
Enable parallel codegen (2 units) by default when --opt-level is 0 or 1. This
gives a minor speedup on large crates (~10%), with only a tiny slowdown (~2%)
for small ones (which usually build in under a second regardless). The current
default (no parallelization) is used when the user requests optimization
(--opt-level 2 or 3), and when the user has enabled LTO (which is incompatible
with parallel codegen).
This commit also changes the rust build system to use parallel codegen
when appropriate. This means codegen-units=4 for stage0 always, and
also for stage1 and stage2 when configured with --disable-optimize.
(Other settings use codegen-units=1 for stage1 and stage2, to get
maximum performance for release binaries.) The build system also sets
codegen-units=1 for compiletest tests (compiletest does its own
parallelization) and uses the same setting as stage2 for crate tests.
of tracking individual candidates per impl, we just track one
candidate for the extension trait itself, and let the trait resolution
handle walking the individual impls and so forth. Also change the
interface to report back a richer notion of error.