move packed-struct tests into packed/ folder
We already have a bunch of other tests named `packed/packed-struct*`, no reason to have these two tests be separate.
Add more information to StableMIR Instance
Allow stable MIR users to retrieve an instance function signature, the index for a VTable instance and more information about its underlying definition.
These are needed to properly interpret function calls, either via VTable or direct calls. The `CrateDef` implementation will also allow users to emit diagnostic messages.
I also fixed a few issues that we had identified before with how we were retrieving body of things that may not have a body available.
Handle recursion limit for subtype and well-formed predicates
Adds a recursion limit check for subtype predicates and well-formed predicates.
`-Ztrait-solver=next` currently panics with unimplemented for these cases.
These cases are arguably bugs in the occurs check but:
- I could not find a simple way to fix the occurs check
- There should still be a recursion limit check to prevent hangs anyway.
closes#117151
r? types
Centralize live loans maintenance to fix scope differences due to liveness
As found in the recent [polonius crater run](https://github.com/rust-lang/rust/pull/117593#issuecomment-1801398892), NLLs and the location-insensitive polonius computed different scopes on some specific CFG shapes, e.g. the following.
![image](https://github.com/rust-lang/rust/assets/247183/c3649f5e-3058-454e-854e-1a6b336bdd5e)
I had missed that liveness data was pushed from different sources than just the liveness computation: there are a few places that do this -- and some of them may be unneeded or at the very least untested, as no tests changed when I tried removing some of them.
Here, `_6` is e.g. dead on entry to `bb2[0]` during `liveness::trace`, but its regions will be marked as live later during "constraint generation" (which I plan to refactor away and put in the liveness module soon). This should cause the inflowing loans to be marked live, but they were only computed in `liveness::trace`.
Therefore, this PR moves live loan maintenance to `LivenessValues`, so that the various places pushing liveness data will all also update live loans at the same time -- except for promoteds which I don't believe need them, and their liveness handling is already interesting/peculiar.
All the regressions I saw in the initial crater run were related to this kind of shapes, and this change did fix all of them on the [next run](https://github.com/rust-lang/rust/pull/117593#issuecomment-1826132145).
r? `@matthewjasper`
(This will conflict with #117880 but whichever lands first is fine by me, the end goal is the same for both)
Restore `#![no_builtins]` crates participation in LTO.
After #113716, we can make `#![no_builtins]` crates participate in LTO again.
`#![no_builtins]` with LTO does not result in undefined references to the error. I believe this type of issue won't happen again.
Fixes#72140. Fixes#112245. Fixes#110606. Fixes#105734. Fixes#96486. Fixes#108853. Fixes#108893. Fixes#78744. Fixes#91158. Fixes https://github.com/rust-lang/cargo/issues/10118. Fixes https://github.com/rust-lang/compiler-builtins/issues/347.
The `nightly-2023-07-20` version does not always reproduce problems due to changes in compiler-builtins, core, and user code. That's why this issue recurs and disappears.
Some issues were not tested due to the difficulty of reproducing them.
r? pnkfelix
cc `@bjorn3` `@japaric` `@alexcrichton` `@Amanieu`
Liveness data is pushed from multiple parts of NLL. Instead of changing
the call sites to maintain live loans, move the latter to `LivenessValues` where
this liveness data is pushed to, and maintain live loans there.
This fixes the differences in polonius scopes on some CFGs where a
variable was dead in tracing but as a MIR terminator its regions were marked
live from "constraint generation"
Stabilize C string literals
RFC: https://rust-lang.github.io/rfcs/3348-c-str-literal.html
Tracking issue: https://github.com/rust-lang/rust/issues/105723
Documentation PR (reference manual): https://github.com/rust-lang/reference/pull/1423
# Stabilization report
Stabilizes C string and raw C string literals (`c"..."` and `cr#"..."#`), which are expressions of type [`&CStr`](https://doc.rust-lang.org/stable/core/ffi/struct.CStr.html). Both new literals require Rust edition 2021 or later.
```rust
const HELLO: &core::ffi::CStr = c"Hello, world!";
```
C strings may contain any byte other than `NUL` (`b'\x00'`), and their in-memory representation is guaranteed to end with `NUL`.
## Implementation
Originally implemented by PR https://github.com/rust-lang/rust/pull/108801, which was reverted due to unintentional changes to lexer behavior in Rust editions < 2021.
The current implementation landed in PR https://github.com/rust-lang/rust/pull/113476, which restricts C string literals to Rust edition >= 2021.
## Resolutions to open questions from the RFC
* Adding C character literals (`c'.'`) of type `c_char` is not part of this feature.
* Support for `c"..."` literals does not prevent `c'.'` literals from being added in the future.
* C string literals should not be blocked on making `&CStr` a thin pointer.
* It's possible to declare constant expressions of type `&'static CStr` in stable Rust (as of v1.59), so C string literals are not adding additional coupling on the internal representation of `CStr`.
* The unstable `concat_bytes!` macro should not accept `c"..."` literals.
* C strings have two equally valid `&[u8]` representations (with or without terminal `NUL`), so allowing them to be used in `concat_bytes!` would be ambiguous.
* Adding a type to represent C strings containing valid UTF-8 is not part of this feature.
* Support for a hypothetical `&Utf8CStr` may be explored in the future, should such a type be added to Rust.