Now that we have an overloaded comparison (`==`) operator, and that `Vec`/`String` deref to `[T]`/`str` on method calls, many `as_slice()`/`as_mut_slice()`/`to_string()` calls have become redundant. This patch removes them. These were the most common patterns:
- `assert_eq(test_output.as_slice(), "ground truth")` -> `assert_eq(test_output, "ground truth")`
- `assert_eq(test_output, "ground truth".to_string())` -> `assert_eq(test_output, "ground truth")`
- `vec.as_mut_slice().sort()` -> `vec.sort()`
- `vec.as_slice().slice(from, to)` -> `vec.slice(from_to)`
---
Note that e.g. `a_string.push_str(b_string.as_slice())` has been left untouched in this PR, since we first need to settle down whether we want to favor the `&*b_string` or the `b_string[]` notation.
This is rebased on top of #19167
cc @alexcrichton @aturon
In regards to:
https://github.com/rust-lang/rust/issues/19253#issuecomment-64836729
This commit:
* Changes the #deriving code so that it generates code that utilizes fewer
reexports (in particur Option::* and Result::*), which is necessary to
remove those reexports in the future
* Changes other areas of the codebase so that fewer reexports are utilized
io::stdin returns a new `BufferedReader` each time it's called, which
results in some very confusing behavior with disappearing output. It now
returns a `StdinReader`, which wraps a global singleton
`Arc<Mutex<BufferedReader<StdReader>>`. `Reader` is implemented directly
on `StdinReader`. However, `Buffer` is not, as the `fill_buf` method is
fundamentaly un-thread safe. A `lock` method is defined on `StdinReader`
which returns a smart pointer wrapping the underlying `BufferedReader`
while guaranteeing mutual exclusion.
Code that treats the return value of io::stdin as implementing `Buffer`
will break. Add a call to `lock`:
```rust
io::stdin().lines()
// =>
io::stdin().lock().lines()
```
Closes#14434
[breaking-change]
This commit removes the `std::local_data` module in favor of a new
`std::thread_local` module providing thread local storage. The module provides
two variants of TLS: one which owns its contents and one which is based on
scoped references. Each implementation has pros and cons listed in the
documentation.
Both flavors have accessors through a function called `with` which yield a
reference to a closure provided. Both flavors also panic if a reference cannot
be yielded and provide a function to test whether an access would panic or not.
This is an implementation of [RFC 461][rfc] and full details can be found in
that RFC.
This is a breaking change due to the removal of the `std::local_data` module.
All users can migrate to the new thread local system like so:
thread_local!(static FOO: Rc<RefCell<Option<T>>> = Rc::new(RefCell::new(None)))
The old `local_data` module inherently contained the `Rc<RefCell<Option<T>>>` as
an implementation detail which must now be explicitly stated by users.
[rfc]: https://github.com/rust-lang/rfcs/pull/461
[breaking-change]
Previously, the entire runtime API surface was publicly exposed, but
that is neither necessary nor desirable. This commit hides most of the
module, using librustrt directly as needed. The arrangement will need to
be revisited when rustrt is pulled into std.
[breaking-change]
This breaks code that referred to variant names in the same namespace as
their enum. Reexport the variants in the old location or alter code to
refer to the new locations:
```
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
=>
```
pub use self::Foo::{A, B};
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
or
```
pub enum Foo {
A,
B
}
fn main() {
let a = Foo::A;
}
```
[breaking-change]
This patch continues runtime removal by moving the tty implementations
into `sys`.
Because this eliminates APIs in `libnative` and `librustrt`, it is a:
[breaking-change]
This functionality is likely to be available publicly, in some form,
from `std` in the future.
This moves the filesystem implementation from libnative into the new
`sys` modules, refactoring along the way and hooking into `std::io::fs`.
Because this eliminates APIs in `libnative` and `librustrt`, it is a:
[breaking-change]
This functionality is likely to be available publicly, in some form,
from `std` in the future.
This commit renames a number of extension traits for slices and string
slices, now that they have been refactored for DST. In many cases,
multiple extension traits could now be consolidated. Further
consolidation will be possible with generalized where clauses.
The renamings are consistent with the [new `-Prelude`
suffix](https://github.com/rust-lang/rfcs/pull/344). There are probably
a few more candidates for being renamed this way, but that is left for
API stabilization of the relevant modules.
Because this renames traits, it is a:
[breaking-change]
However, I do not expect any code that currently uses the standard
library to actually break.
Closes#17917
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]
compiletest: compact "linux" "macos" etc.as "unix".
liballoc: remove a superfluous "use".
libcollections: remove invocations of deprecated methods in favor of
their suggested replacements and use "_" for a loop counter.
libcoretest: remove invocations of deprecated methods; also add
"allow(deprecated)" for testing a deprecated method itself.
libglob: use "cfg_attr".
libgraphviz: add a test for one of data constructors.
libgreen: remove a superfluous "use".
libnum: "allow(type_overflow)" for type cast into u8 in a test code.
librustc: names of static variables should be in upper case.
libserialize: v[i] instead of get().
libstd/ascii: to_lowercase() instead of to_lower().
libstd/bitflags: modify AnotherSetOfFlags to use i8 as its backend.
It will serve better for testing various aspects of bitflags!.
libstd/collections: "allow(deprecated)" for testing a deprecated
method itself.
libstd/io: remove invocations of deprecated methods and superfluous "use".
Also add #[test] where it was missing.
libstd/num: introduce a helper function to effectively remove
invocations of a deprecated method.
libstd/path and rand: remove invocations of deprecated methods and
superfluous "use".
libstd/task and libsync/comm: "allow(deprecated)" for testing
a deprecated method itself.
libsync/deque: remove superfluous "unsafe".
libsync/mutex and once: names of static variables should be in upper case.
libterm: introduce a helper function to effectively remove
invocations of a deprecated method.
We still see a few warnings about using obsoleted native::task::spawn()
in the test modules for libsync. I'm not sure how I should replace them
with std::task::TaksBuilder and native::task::NativeTaskBuilder
(dependency to libstd?)
Signed-off-by: NODA, Kai <nodakai@gmail.com>
This commit removes the `iotest!` macro from `std::io`. The macro was
primarily used to ensure that all io-related tests were run on both
libnative and libgreen/librustuv. However, now that the librustuv stack
is being removed, the macro is no longer needed.
See the [runtime removal
RFC](https://github.com/rust-lang/rfcs/pull/230) for more context.
[breaking-change]
I've found that 64k is still too much and continue to see the errors as reported
in #14940. I've locally found that 32k fails, and 24k succeeds, so I've trimmed
the size down to 10000 which the included links in the added comment end up
recommending.
It sounds like the limit can still be hit with many threads in play, but I have
yet to reproduce this, so I figure we can wait until that's hit (if it's
possible) and then take action.
I've found that 64k is still too much and continue to see the errors as reported
in #14940. I've locally found that 32k fails, and 24k succeeds, so I've trimmed
the size down to 8192 which libuv happens to use as well.
It sounds like the limit can still be hit with many threads in play, but I have
yet to reproduce this, so I figure we can wait until that's hit (if it's
possible) and then take action.
ImmutableVector -> ImmutableSlice
ImmutableEqVector -> ImmutableEqSlice
ImmutableOrdVector -> ImmutableOrdSlice
MutableVector -> MutableSlice
MutableVectorAllocating -> MutableSliceAllocating
MutableCloneableVector -> MutableCloneableSlice
MutableOrdVector -> MutableOrdSlice
These are all in the prelude so most code will not break.
[breaking-change]
This PR is the outcome of the library stabilization meeting for the
`liballoc::owned` and `libcore::cell` modules.
Aside from the stability attributes, there are a few breaking changes:
* The `owned` modules is now named `boxed`, to better represent its
contents. (`box` was unavailable, since it's a keyword.) This will
help avoid the misconception that `Box` plays a special role wrt
ownership.
* The `AnyOwnExt` extension trait is renamed to `BoxAny`, and its `move`
method is renamed to `downcast`, in both cases to improve clarity.
* The recently-added `AnySendOwnExt` extension trait is removed; it was
not being used and is unnecessary.
[breaking-change]
Replace its usage with byte string literals, except in `bytes!()` tests.
Also add a new snapshot, to be able to use the new b"foo" syntax.
The src/etc/2014-06-rewrite-bytes-macros.py script automatically
rewrites `bytes!()` invocations into byte string literals.
Pass it filenames as arguments to generate a diff that you can inspect,
or `--apply` followed by filenames to apply the changes in place.
Diffs can be piped into `tip` or `pygmentize -l diff` for coloring.
The span on a inner doc-comment would point to the next token, e.g. the span for the `a` line points to the `b` line, and the span of `b` points to the `fn`.
```rust
//! a
//! b
fn bar() {}
```
1. Wherever the `buf` field of a `Formatter` was used, the `Formatter` is used
instead.
2. The usage of `write_fmt` is minimized as much as possible, the `write!` macro
is preferred wherever possible.
3. Usage of `fmt::write` is minimized, favoring the `write!` macro instead.
These implementations must live in libstd right now because the fmt module has
not been migrated yet. This will occur in a later PR.
Just to be clear, there are new extension traits, but they are not necessary
once the std::fmt module has migrated to libcore, which is a planned migration
in the future.
for `~str`/`~[]`.
Note that `~self` still remains, since I forgot to add support for
`Box<self>` before the snapshot.
How to update your code:
* Instead of `~EXPR`, you should write `box EXPR`.
* Instead of `~TYPE`, you should write `Box<Type>`.
* Instead of `~PATTERN`, you should write `box PATTERN`.
[breaking-change]
Apparently windows doesn't like reading from stdin with a large buffer size, and
it also apparently is ok with a smaller buffer size. This changes the reader
returned by stdin() to return an 8k buffered reader for stdin rather than a 64k
buffered reader.
Apparently libuv has run into this before, taking a peek at their code, with a
specific comment in their console code saying that "ReadConsole can't handle big
buffers", which I presume is related to invoking ReadFile as if it were a file
descriptor.
Closes#13304
this comes from a discussion on IRC where the split between stdin and stdout
seemed unnatural, and the fact that reading on stdin won't flush stdout, which
is unlike every other language (including C's stdio).