Warn on elided lifetimes in associated constants (`ELIDED_LIFETIMES_IN_ASSOCIATED_CONSTANT`)
Elided lifetimes in associated constants (in impls) erroneously resolve to fresh lifetime parameters on the impl since #97313. This is not correct behavior (see #38831).
I originally opened #114716 to fix this, but given the time that has passed, the crater results seem pretty bad: https://github.com/rust-lang/rust/pull/114716#issuecomment-1682091952
This PR alternatively implements a lint against this behavior, and I'm hoping to bump this to deny in a few versions.
Similar to prior support added for the mips430, avr, and x86 targets
this change implements the rough equivalent of clang's
[`__attribute__((interrupt))`][clang-attr] for riscv targets, enabling
e.g.
```rust
static mut CNT: usize = 0;
pub extern "riscv-interrupt-m" fn isr_m() {
unsafe {
CNT += 1;
}
}
```
to produce highly effective assembly like:
```asm
pub extern "riscv-interrupt-m" fn isr_m() {
420003a0: 1141 addi sp,sp,-16
unsafe {
CNT += 1;
420003a2: c62a sw a0,12(sp)
420003a4: c42e sw a1,8(sp)
420003a6: 3fc80537 lui a0,0x3fc80
420003aa: 63c52583 lw a1,1596(a0) # 3fc8063c <_ZN12esp_riscv_rt3CNT17hcec3e3a214887d53E.0>
420003ae: 0585 addi a1,a1,1
420003b0: 62b52e23 sw a1,1596(a0)
}
}
420003b4: 4532 lw a0,12(sp)
420003b6: 45a2 lw a1,8(sp)
420003b8: 0141 addi sp,sp,16
420003ba: 30200073 mret
```
(disassembly via `riscv64-unknown-elf-objdump -C -S --disassemble ./esp32c3-hal/target/riscv32imc-unknown-none-elf/release/examples/gpio_interrupt`)
This outcome is superior to hand-coded interrupt routines which, lacking
visibility into any non-assembly body of the interrupt handler, have to
be very conservative and save the [entire CPU state to the stack
frame][full-frame-save]. By instead asking LLVM to only save the
registers that it uses, we defer the decision to the tool with the best
context: it can more accurately account for the cost of spills if it
knows that every additional register used is already at the cost of an
implicit spill.
At the LLVM level, this is apparently [implemented by] marking every
register as "[callee-save]," matching the semantics of an interrupt
handler nicely (it has to leave the CPU state just as it found it after
its `{m|s}ret`).
This approach is not suitable for every interrupt handler, as it makes
no attempt to e.g. save the state in a user-accessible stack frame. For
a full discussion of those challenges and tradeoffs, please refer to
[the interrupt calling conventions RFC][rfc].
Inside rustc, this implementation differs from prior art because LLVM
does not expose the "all-saved" function flavor as a calling convention
directly, instead preferring to use an attribute that allows for
differentiating between "machine-mode" and "superivsor-mode" interrupts.
Finally, some effort has been made to guide those who may not yet be
aware of the differences between machine-mode and supervisor-mode
interrupts as to why no `riscv-interrupt` calling convention is exposed
through rustc, and similarly for why `riscv-interrupt-u` makes no
appearance (as it would complicate future LLVM upgrades).
[clang-attr]: https://clang.llvm.org/docs/AttributeReference.html#interrupt-risc-v
[full-frame-save]: 9281af2ecf/src/lib.rs (L440-L469)
[implemented by]: b7fb2a3fec/llvm/lib/Target/RISCV/RISCVRegisterInfo.cpp (L61-L67)
[callee-save]: 973f1fe7a8/llvm/lib/Target/RISCV/RISCVCallingConv.td (L30-L37)
[rfc]: https://github.com/rust-lang/rfcs/pull/3246
This function/lang_item was introduced in #104321 as a temporary workaround of future lowering.
The usage and need for it went away in #104833.
After a bootstrap update, the function itself can be removed from `std`.
More core::fmt::rt cleanup.
- Removes the `V1` suffix from the `Argument` and `Flag` types.
- Moves more of the format_args lang items into the `core::fmt::rt` module. (The only remaining lang item in `core::fmt` is `Arguments` itself, which is a public type.)
Part of https://github.com/rust-lang/rust/issues/99012
Follow-up to https://github.com/rust-lang/rust/pull/110616
Report allocation errors as panics
OOM is now reported as a panic but with a custom payload type (`AllocErrorPanicPayload`) which holds the layout that was passed to `handle_alloc_error`.
This should be review one commit at a time:
- The first commit adds `AllocErrorPanicPayload` and changes allocation errors to always be reported as panics.
- The second commit removes `#[alloc_error_handler]` and the `alloc_error_hook` API.
ACP: https://github.com/rust-lang/libs-team/issues/192Closes#51540Closes#51245
Added byte position range for `proc_macro::Span`
Currently, the [`Debug`](https://doc.rust-lang.org/beta/proc_macro/struct.Span.html#impl-Debug-for-Span) implementation for [`proc_macro::Span`](https://doc.rust-lang.org/beta/proc_macro/struct.Span.html#) calls the debug function implemented in the trait implementation of `server::Span` for the type `Rustc` in the `rustc-expand` crate.
The current implementation, of the referenced function, looks something like this:
```rust
fn debug(&mut self, span: Self::Span) -> String {
if self.ecx.ecfg.span_debug {
format!("{:?}", span)
} else {
format!("{:?} bytes({}..{})", span.ctxt(), span.lo().0, span.hi().0)
}
}
```
It returns the byte position of the [`Span`](https://doc.rust-lang.org/beta/proc_macro/struct.Span.html#) as an interpolated string.
Because this is currently the only way to get a spans position in the file, I might lead someone, who is interested in this information, to parsing this interpolated string back into a range of bytes, which I think is a very non-rusty way.
The proposed `position()`, method implemented in this PR, gives the ability to directly get this info.
It returns a [`std::ops::Range`](https://doc.rust-lang.org/std/ops/struct.Range.html#) wrapping the lowest and highest byte of the [`Span`](https://doc.rust-lang.org/beta/proc_macro/struct.Span.html#).
I put it behind the `proc_macro_span` feature flag because many of the other functions that have a similar footprint also are annotated with it, I don't actually know if this is right.
It would be great if somebody could take a look at this, thank you very much in advanced.
Make compressed rmeta contain compressed data length after header
Fixes#90056, which is caused by link.exe introducing padding to the `.rustc` section, since it assumes this will have no effect besides allowing it to possibly use the extra space in future links.
(This is a large commit. The changes to
`compiler/rustc_middle/src/ty/context.rs` are the most important ones.)
The current naming scheme is a mess, with a mix of `_intern_`, `intern_`
and `mk_` prefixes, with little consistency. In particular, in many
cases it's easy to use an iterator interner when a (preferable) slice
interner is available.
The guiding principles of the new naming system:
- No `_intern_` prefixes.
- The `intern_` prefix is for internal operations.
- The `mk_` prefix is for external operations.
- For cases where there is a slice interner and an iterator interner,
the former is `mk_foo` and the latter is `mk_foo_from_iter`.
Also, `slice_interners!` and `direct_interners!` can now be `pub` or
non-`pub`, which helps enforce the internal/external operations
division.
It's not perfect, but I think it's a clear improvement.
The following lists show everything that was renamed.
slice_interners
- const_list
- mk_const_list -> mk_const_list_from_iter
- intern_const_list -> mk_const_list
- substs
- mk_substs -> mk_substs_from_iter
- intern_substs -> mk_substs
- check_substs -> check_and_mk_substs (this is a weird one)
- canonical_var_infos
- intern_canonical_var_infos -> mk_canonical_var_infos
- poly_existential_predicates
- mk_poly_existential_predicates -> mk_poly_existential_predicates_from_iter
- intern_poly_existential_predicates -> mk_poly_existential_predicates
- _intern_poly_existential_predicates -> intern_poly_existential_predicates
- predicates
- mk_predicates -> mk_predicates_from_iter
- intern_predicates -> mk_predicates
- _intern_predicates -> intern_predicates
- projs
- intern_projs -> mk_projs
- place_elems
- mk_place_elems -> mk_place_elems_from_iter
- intern_place_elems -> mk_place_elems
- bound_variable_kinds
- mk_bound_variable_kinds -> mk_bound_variable_kinds_from_iter
- intern_bound_variable_kinds -> mk_bound_variable_kinds
direct_interners
- region
- intern_region (unchanged)
- const
- mk_const_internal -> intern_const
- const_allocation
- intern_const_alloc -> mk_const_alloc
- layout
- intern_layout -> mk_layout
- adt_def
- intern_adt_def -> mk_adt_def_from_data (unusual case, hard to avoid)
- alloc_adt_def(!) -> mk_adt_def
- external_constraints
- intern_external_constraints -> mk_external_constraints
Other
- type_list
- mk_type_list -> mk_type_list_from_iter
- intern_type_list -> mk_type_list
- tup
- mk_tup -> mk_tup_from_iter
- intern_tup -> mk_tup