Cached stable hash cleanups
r? `@nnethercote`
Add a sanity assertion in debug mode to check that the cached hashes are actually the ones we get if we compute the hash each time.
Add a new data structure that bundles all the hash-caching work to make it easier to re-use it for different interned data structures
Enforce well formedness for type alias impl trait's hidden type
fixes#84657
This was not an issue with return-position-impl-trait because the generic bounds of the function are the same as those of the opaque type, and the hidden type must already be well formed within the function.
With type-alias-impl-trait the hidden type could be defined in a function that has *more* lifetime bounds than the type alias. This is fine, but the hidden type must still be well formed without those additional bounds.
This allows profiling costly arguments to be recorded only when `-Zself-profile-events=args` is on: using a closure that takes an `EventArgRecorder` and call its `record_arg` or `record_args` methods.
Add debug assertions to some unsafe functions
As suggested by https://github.com/rust-lang/rust/issues/51713
~~Some similar code calls `abort()` instead of `panic!()` but aborting doesn't work in a `const fn`, and the intrinsic for doing dispatch based on whether execution is in a const is unstable.~~
This picked up some invalid uses of `get_unchecked` in the compiler, and fixes them.
I can confirm that they do in fact pick up invalid uses of `get_unchecked` in the wild, though the user experience is less-than-awesome:
```
Running unittests (target/x86_64-unknown-linux-gnu/debug/deps/rle_decode_fast-04b7918da2001b50)
running 6 tests
error: test failed, to rerun pass '--lib'
Caused by:
process didn't exit successfully: `/home/ben/rle-decode-helper/target/x86_64-unknown-linux-gnu/debug/deps/rle_decode_fast-04b7918da2001b50` (signal: 4, SIGILL: illegal instruction)
```
~~As best I can tell these changes produce a 6% regression in the runtime of `./x.py test` when `[rust] debug = true` is set.~~
Latest commit (6894d559bd) brings the additional overhead from this PR down to 0.5%, while also adding a few more assertions. I think this actually covers all the places in `core` that it is reasonable to check for safety requirements at runtime.
Thoughts?
Rollup of 5 pull requests
Successful merges:
- #95294 (Document Linux kernel handoff in std::io::copy and std::fs::copy)
- #95443 (Clarify how `src/tools/x` searches for python)
- #95452 (fix since field version for termination stabilization)
- #95460 (Spellchecking compiler code)
- #95461 (Spellchecking some comments)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
These debug assertions are all implemented only at runtime using
`const_eval_select`, and in the error path they execute
`intrinsics::abort` instead of being a normal debug assertion to
minimize the impact of these assertions on code size, when enabled.
Of all these changes, the bounds checks for unchecked indexing are
expected to be most impactful (case in point, they found a problem in
rustc).
`Layout` is another type that is sometimes interned, sometimes not, and
we always use references to refer to it so we can't take any advantage
of the uniqueness properties for hashing or equality checks.
This commit renames `Layout` as `LayoutS`, and then introduces a new
`Layout` that is a newtype around an `Interned<LayoutS>`. It also
interns more layouts than before. Previously layouts within layouts
(via the `variants` field) were never interned, but now they are. Hence
the lifetime on the new `Layout` type.
Unlike other interned types, these ones are in `rustc_target` instead of
`rustc_middle`. This reflects the existing structure of the code, which
does layout-specific stuff in `rustc_target` while `TyAndLayout` is
generic over the `Ty`, allowing the type-specific stuff to occur in
`rustc_middle`.
The commit also adds a `HashStable` impl for `Interned`, which was
needed. It hashes the contents, unlike the `Hash` impl which hashes the
pointer.
Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.
This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.
In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.
The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
Always include global target features in function attributes
This ensures that information about target features configured with
`-C target-feature=...` or detected with `-C target-cpu=native` is
retained for subsequent consumers of LLVM bitcode.
This is crucial for linker plugin LTO, since this information is not
conveyed to the plugin otherwise.
<details><summary>Additional test case demonstrating the issue</summary>
```rust
extern crate core;
#[inline]
#[target_feature(enable = "aes")]
unsafe fn f(a: u128, b: u128) -> u128 {
use core::arch::x86_64::*;
use core::mem::transmute;
transmute(_mm_aesenc_si128(transmute(a), transmute(b)))
}
pub fn g(a: u128, b: u128) -> u128 {
unsafe { f(a, b) }
}
fn main() {
let mut args = std::env::args();
let _ = args.next().unwrap();
let a: u128 = args.next().unwrap().parse().unwrap();
let b: u128 = args.next().unwrap().parse().unwrap();
println!("{}", g(a, b));
}
```
```console
$ rustc --edition=2021 a.rs -Clinker-plugin-lto -Clink-arg=-fuse-ld=lld -Ctarget-feature=+aes -O
...
= note: LLVM ERROR: Cannot select: intrinsic %llvm.x86.aesni.aesenc
```
</details>
r? `@nagisa`
Rollup of 9 pull requests
Successful merges:
- #94464 (Suggest adding a new lifetime parameter when two elided lifetimes should match up for traits and impls.)
- #94476 (7 - Make more use of `let_chains`)
- #94478 (Fix panic when handling intra doc links generated from macro)
- #94482 (compiler: fix some typos)
- #94490 (Update books)
- #94496 (tests: accept llvm intrinsic in align-checking test)
- #94498 (9 - Make more use of `let_chains`)
- #94503 (Provide C FFI types via core::ffi, not just in std)
- #94513 (update Miri)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Avoid query cache sharding code in single-threaded mode
In non-parallel compilers, this is just adding needless overhead at compilation time (since there is only one shard statically anyway). This amounts to roughly ~10 seconds reduction in bootstrap time, with overall neutral (some wins, some losses) performance results.
Parallel compiler performance should be largely unaffected by this PR; sharding is kept there.
Avoid exhausting stack space in dominator compression
Doesn't add a test case -- I ended up running into this while playing with the generated example from #43578, which we could do with a run-make test (to avoid checking a large code snippet into tree), but I suspect we don't want to wait for it to compile (locally it takes ~14s -- not terrible, but doesn't seem worth it to me). In practice stack space exhaustion is difficult to test for, too, since if we set the bound too low a different call structure above us (e.g., a nearer ensure_sufficient_stack call) would let the test pass even with the old impl, most likely.
Locally it seems like this manages to perform approximately equivalently to the recursion, but will run perf to confirm.
Introduce `ChunkedBitSet` and use it for some dataflow analyses.
This reduces peak memory usage significantly for some programs with very
large functions.
r? `@ghost`
This reduces peak memory usage significantly for some programs with very
large functions, such as:
- `keccak`, `unicode_normalization`, and `match-stress-enum`, from
the `rustc-perf` benchmark suite;
- `http-0.2.6` from crates.io.
The new type is used in the analyses where the bitsets can get huge
(e.g. 10s of thousands of bits): `MaybeInitializedPlaces`,
`MaybeUninitializedPlaces`, and `EverInitializedPlaces`.
Some refactoring was required in `rustc_mir_dataflow`. All existing
analysis domains are either `BitSet` or a trivial wrapper around
`BitSet`, and access in a few places is done via `Borrow<BitSet>` or
`BorrowMut<BitSet>`. Now that some of these domains are `ClusterBitSet`,
that no longer works. So this commit replaces the `Borrow`/`BorrowMut`
usage with a new trait `BitSetExt` containing the needed bitset
operations. The impls just forward these to the underlying bitset type.
This required fiddling with trait bounds in a few places.
The commit also:
- Moves `static_assert_size` from `rustc_data_structures` to
`rustc_index` so it can be used in the latter; the former now
re-exports it so existing users are unaffected.
- Factors out some common "clear excess bits in the final word"
functionality in `bit_set.rs`.
- Uses `fill` in a few places instead of loops.
Allow inlining of `ensure_sufficient_stack()`
This functions is monomorphized a lot and allowing the compiler to inline it improves instructions count and max RSS significantly in my local tests.
In particular, there's now more protection against incorrect usage,
because you can only create one via `Interned::new_unchecked`, which
makes it more obvious that you must be careful.
There are also some tests.
Compress amount of hashed bytes for `isize` values in StableHasher
This is another attempt to land https://github.com/rust-lang/rust/pull/92103, this time hopefully with a correct implementation w.r.t. stable hashing guarantees. The previous PR was [reverted](https://github.com/rust-lang/rust/pull/93014) because it could produce the [same hash](https://github.com/rust-lang/rust/pull/92103#issuecomment-1014625442) for different values even in quite simple situations. I have since added a basic [test](https://github.com/rust-lang/rust/pull/93193) that should guard against that situation, I also added a new test in this PR, specialised for this optimization.
## Why this optimization helps
Since the original PR, I have tried to analyze why this optimization even helps (and why it especially helps for `clap`). I found that the vast majority of stable-hashing `i64` actually comes from hashing `isize` (which is converted to `i64` in the stable hasher). I only found a single place where is this datatype used directly in the compiler, and this place has also been showing up in traces that I used to find out when is `isize` being hashed. This place is `rustc_span::FileName::DocTest`, however, I suppose that isizes also come from other places, but they might not be so easy to find (there were some other entries in the trace). `clap` hashes about 8.5 million `isize`s, and all of them fit into a single byte, which is why this optimization has helped it [quite a lot](https://github.com/rust-lang/rust/pull/92103#issuecomment-1005711861).
Now, I'm not sure if special casing `isize` is the correct solution here, maybe something could be done with that `isize` inside `DocTest` or in other places, but that's for another discussion I suppose. In this PR, instead of hardcoding a special case inside `SipHasher128`, I instead put it into `StableHasher`, and only used it for `isize` (I tested that for `i64` it doesn't help, or at least not for `clap` and other few benchmarks that I was testing).
## New approach
Since the most common case is a single byte, I added a fast path for hashing `isize` values which positive value fits within a single byte, and a cold path for the rest of the values.
To avoid the previous correctness problem, we need to make sure that each unique `isize` value will produce a unique hash stream to the hasher. By hash stream I mean a sequence of bytes that will be hashed (a different sequence should produce a different hash, but that is of course not guaranteed).
We have to distinguish different values that produce the same bit pattern when we combine them. For example, if we just simply skipped the leading zero bytes for values that fit within a single byte, `(0xFF, 0xFFFFFFFFFFFFFFFF)` and `(0xFFFFFFFFFFFFFFFF, 0xFF)` would send the same hash stream to the hasher, which must not happen.
To avoid this situation, values `[0, 0xFE]` are hashed as a single byte. When we hash a larger (treating `isize` as `u64`) value, we first hash an additional byte `0xFF`. Since `0xFF` cannot occur when we apply the single byte optimization, we guarantee that the hash streams will be unique when hashing two values `(a, b)` and `(b, a)` if `a != b`:
1) When both `a` and `b` are within `[0, 0xFE]`, their hash streams will be different.
2) When neither `a` and `b` are within `[0, 0xFE]`, their hash streams will be different.
3) When `a` is within `[0, 0xFE]` and `b` isn't, when we hash `(a, b)`, the hash stream will definitely not begin with `0xFF`. When we hash `(b, a)`, the hash stream will definitely begin with `0xFF`. Therefore the hash streams will be different.
r? `@the8472`
Make `Fingerprint::combine_commutative` associative
The previous implementation swapped lower and upper 64-bits of a result
of modular addition, so the function was non-associative.
r? `@Aaron1011`