This represents the compilation environment, defined as AST meta_items, Used
for driving conditional compilation and will eventually replace the
environment used by the parser for the current conditional compilation scheme.
Issue #489
Implement "claim" (issue #14), which is a version of "check" that
doesn't really do the check at runtime. It's an unsafe feature.
The new flag --check-claims turns claims into checks automatically --
but it's off by default, so by default, the assertion in a claim
doesn't execute at runtime.
This will probably need more work, as moving doesn't appear to do
quite the right thing yet in general, and we should also check
somewhere that we're not, for example, moving out the content out of
an immutable field (probably moving out of fields is not okay in
general).
Non-copyability is not enforced yet, and something is still flaky with
dropping of the internal value, so don't actually use them yet. I'm
merging this in so that I don't have to keep merging against new
patches.
Modified typestate to throw away any constraints mentioning a
variable on the LHS of an assignment, recv, assign_op, or on
either side of a swap.
Some code cleanup as well.
This involved, in part, changing the ast::def type so that a def_fn
has a "purity" field. This lets the typechecker determine whether
functions defined in other crates are pure.
It also required updating some error messages in tests. As a test
for cross-crate constrained functions, I added a safe_slice function
to std::str (slice(), with one of the asserts replaced with a
function precondition) and some test cases (various versions of
fn-constraint.rs) that call it. Also, I changed "fn" to "pred" for
some of the boolean functions in std::uint.
This reduces some redundancy in the AST data structures and cruft in
the code that works with them. To get a def_id from a node_id, apply
ast::local_def, which adds the local crate_num to the given node_id.
Most code only deals with crate-local node_ids, and won't have to
create def_ids at all.
Most of the fields in an AST item were present in all variants. Things
could be simplified considerably by putting them in the rec rather
than in the variant tags.
I added a "resolved" version of the ast::constr type -- ty::constr_def
-- that has a def_id field instead of an ann_field. This is more
consistent with other types and eliminates some checking.
Incidentally, I removed the def_map argument to the top-level function
in middle::alias, since the ty::ctxt already has a def_map field.
Right now the only thing that it adds to meta_item is an indication of whether
the attribute was declared inside or outside the item, but I expect it will
become more useful.
Issue #487
Since the decl in a for or for-each loop must always be a local
decl, I changed the AST to express this. Fewer potential match
failures and "the impossible happened" error messages = yay!
Generate appropriate constraints for calls to functions with
preconditions, and reject calls where those constraints don't
hold true in the prestate.
...by which I mean that it works for one test case :-)
Before, all aliases were implicitly mutable, and writing
&mutable was the same as writing &. Now, the two are
distinguished, and assignments to regular aliases are
no longer allowed.
Changed function types to include a list of constraints. Added
code for parsing and pretty-printing constraints. This necessitated
splitting pprust into two files (pprust and ppaux) to break a
circulate dependency, as ty_to_str now needs to print out constraints,
which may include literals, but pprust depended on ty.
The old system tried to ensure that the location an alias pointed at
would retain its type. That turned out to not be strong enough in the
face of aliases to the inside of tags.
The new system instead proves that values pointed to by aliases are
not replaced (or invalidated in some other way) at all. It knows of
two sufficient conditions for this, and tries to prove at least of
them:
A) The alias is 'immutably rooted' in a local, and this local is not
reassigned for the lifetime of the alias. Immutably rooted means
the alias refers to the local itself, or to something reachable
from the local through immutable dereferencing.
B) No value whose type might include the type of the 'inner mutable
element' of the thing the alias refers to (for example, the box in
rec(mutable x = @mutable int)) is from the outer scope is accessed
for the lifetime of the alias. This means for functions, no other
argument types may include the alias's inner mutable type. For alt,
for each, and for, it means the body does not refer to any locals
originating from outside their scope that include this type.
The lifetime of an alias in an alt, for each, or for body is defined
as the range from its definition to its last use, not to the point
where it goes out of scope. This makes working around these
restrictions somewhat less annoying. For example, you can assign to
your alt-ed value you don't refer to any bindings afterwards.