This is an initial pass at stabilizing the `iter` module. The module is
fairly large, but is also pretty polished, so most of the stabilization
leaves things as they are.
Some changes:
* Due to the new object safety rules, various traits needs to be split
into object-safe traits and extension traits. This includes `Iterator`
itself. While splitting up the traits adds some complexity, it will
also increase flexbility: once we have automatic impls of `Trait` for
trait objects over `Trait`, then things like the iterator adapters
will all work with trait objects.
* Iterator adapters that use up the entire iterator now take it by
value, which makes the semantics more clear and helps catch bugs. Due
to the splitting of Iterator, this does not affect trait objects. If
the underlying iterator is still desired for some reason, `by_ref` can
be used. (Note: this change had no fallout in the Rust distro except
for the useless mut lint.)
* In general, extension traits new and old are following an [in-progress
convention](https://github.com/rust-lang/rfcs/pull/445). As such, they
are marked `unstable`.
* As usual, anything involving closures is `unstable` pending unboxed
closures.
* A few of the more esoteric/underdeveloped iterator forms (like
`RandomAccessIterator` and `MutableDoubleEndedIterator`, along with
various unfolds) are left experimental for now.
* The `order` submodule is left `experimental` because it will hopefully
be replaced by generalized comparison traits.
* "Leaf" iterators (like `Repeat` and `Counter`) are uniformly
constructed by free fns at the module level. That's because the types
are not otherwise of any significance (if we had `impl Trait`, you
wouldn't want to define a type at all).
Closes#17701
Due to renamings and splitting of traits, this is a:
[breaking-change]
It looks like currently kinds required by traits are not propagated when they are wrapped in a TyTrait. Additionally, in SelectionContext::builtin_bound, no attempt is made to check whether the target trait or its supertraits require the kind specified.
This PR alters SelectionContext::builtin_bound to examine all supertraits in the target trait's bounds recursively for required kinds.
Alternatively, the kinds could be added to the TyTrait upon creation (by just setting its builtin_bounds to the union of the bounds requested in this instance and the bounds required by the trait), this option may have less overhead during compilation but information is lost about which kinds were explicitly requested for this instance (vs those specified by traits/supertraits) would be lost.
This patch merges the `libsync` crate into `libstd`, undoing part of the
facade. This is in preparation for ultimately merging `librustrt`, as
well as the upcoming rewrite of `sync`.
Because this removes the `libsync` crate, it is a:
[breaking-change]
However, all uses of `libsync` should be able to reroute through
`std::sync` and `std::comm` instead.
r? @alexcrichton
Code to fragment paths into pieces based on subparts being moved around, e.g. moving `x.1` out of a tuple `(A,B,C)` leaves behind the fragments `x.0: A` and `x.2: C`. Further discussion in borrowck/doc.rs.
Includes differentiation between assigned_fragments and moved_fragments, support for all-but-one array fragments, and instrumentation to print out the moved/assigned/unmmoved/parents for each function, factored out into a separate submodule.
These fragments can then be used by `trans` to inject stack-local dynamic drop flags. (They also can be hooked up with dataflow to reduce the expected number of injected flags.)
The tests use new "//~| ERROR" follow syntax.
Includes a test for moves involving array elements. It was easier
than i realized to get something naive off the ground here.
Includes differentiation between assigned_fragments and
moved_fragments, support for all-but-one array fragments, and
instrumentation to print out the moved/assigned/unmmoved/parents for
each function, factored out into separate submodule.
This is accomplished by:
1. Add `MatchMode` enum to `expr_use_visitor`.
2. Computing the match mode for each pattern via a pre-pass, and then
passing the mode along when visiting the pattern in
expr_use_visitor.
3. Adding a `fn matched_pat` callback to expr_use_visitor, which is
called on interior struct and enum nodes of the pattern (as opposed
to `fn consume_pat`, which is only invoked for identifiers at the
leaves of the pattern), and invoking it accordingly.
Of particular interest are the `cat_downcast` instances established
when matching enum variants.
This is to fix a problem where I could not reliably map attach the
type for each loan-path to the loan-path itself because the same
loan-path was ending up associated with two different types, because
the cmt's had diverged in their interpretation of the path.
To make this clean, refactored old `LoanPath` enum into a
`LoanPath` struct with a `ty::t` and a newly-added `LoanPathVariant` enum.
This enabled me to get rid of the ugly and fragile `LoanPath::to_type`
method, and I can probably also get rid of other stuff that was
supporting it, maybe.
`LpDowncast` carries the `DefId` of the variant itself. To support
this, added the enum variant `DefId` to the `cat_downcast` variant in
`mem_categorization::categorization`.
(updated to fix mem_categorization to handle downcast of enum
struct-variants properly.)
This change applies the conventions to unwrap listed in [RFC 430][rfc] to rename
non-failing `unwrap` methods to `into_inner`. This is a breaking change, but all
`unwrap` methods are retained as `#[deprecated]` for the near future. To update
code rename `unwrap` method calls to `into_inner`.
[rfc]: https://github.com/rust-lang/rfcs/pull/430
[breaking-change]
cc #19091
A slice iterator is isomorphic to a slice, just with a slightly
different form: storing start and end pointers rather than start pointer
and length. This patch reflects this by making converting between them
as easy as `iter.as_slice()` (or even `iter[]` if the shorter lifetime
is ok). That is, `slice.iter().as_slice() == slice`.
r? @aturon
A slice iterator is isomorphic to a slice, just with a slightly
different form: storing start and end pointers rather than start pointer
and length. This patch reflects this by making converting between them
as easy as `iter.as_slice()` (or even `iter[]` if the shorter lifetime
is ok). That is, `slice.iter().as_slice() == slice`.
It turns out that rustrt::at_exit() doesn't actually occur after all pthread
threads have exited (nor does atexit()), so there's not actually a known point
at which we can deallocate these keys. It's not super critical that we do so,
however, because we're about to exit anyway!
Closes#19280
It turns out that rustrt::at_exit() doesn't actually occur after all pthread
threads have exited (nor does atexit()), so there's not actually a known point
at which we can deallocate these keys. It's not super critical that we do so,
however, because we're about to exit anyway!
Closes#19280
"_" should keep the default syntax class (symbol, not word). This
allows, e.g., `forward-word' to behave in the familiar way, jumping to
underscores within a function or variable name.
This patch merges the `libsync` crate into `libstd`, undoing part of the
facade. This is in preparation for ultimately merging `librustrt`, as
well as the upcoming rewrite of `sync`.
Because this removes the `libsync` crate, it is a:
[breaking-change]
However, all uses of `libsync` should be able to reroute through
`std::sync` and `std::comm` instead.
Just like we do with AsSlice
This comes in handy when dealing with iterator-centric APIs (`IntoIterator`!) and you want to receive an `Iterator<S> where S: Str` argument. Without this PR, e.g. you can't receive `&["a", "b"].iter()` instead you'll have to type `&["a", "b"].iter().map(|&x| x)` (A similar thing happens with `&[String]`).
r? @aturon
Full disclaimer: I haven't run `make`/`make check` yet (All my cores are busy)
This commit removes the `std::local_data` module in favor of a new `std::thread_local`
module providing thread local storage. The module provides two variants of TLS:
one which owns its contents and one which is based on scoped references. Each
implementation has pros and cons listed in the documentation.
Both flavors have accessors through a function called `with` which yield a
reference to a closure provided. Both flavors also panic if a reference cannot
be yielded and provide a function to test whether an access would panic or not.
This is an implementation of [RFC 461][rfc] and full details can be found in
that RFC.
This is a breaking change due to the removal of the `std::local_data` module.
All users can migrate to the new tls system like so:
thread_local!(static FOO: Rc<RefCell<Option<T>>> = Rc::new(RefCell::new(None)))
The old `local_data` module inherently contained the `Rc<RefCell<Option<T>>>` as
an implementation detail which must now be explicitly stated by users.
[rfc]: https://github.com/rust-lang/rfcs/pull/461
[breaking-change]
Whilst browsing the source for BinaryHeap, I saw a FIXME for implementing into_iter. I think, since the BinaryHeap is represented internally using just a Vec, just calling into_iter() on the BinaryHeap's data should be sufficient to do what we want here. If this actually isn't the right approach (e.g., I should write a struct MoveItems and appropriate implementation for BinaryHeap instead), let me know and I'll happily rework this.
Both of the tests that I have added pass. This is my first contribution to Rust, so please let me know any ways I can improve this PR!
This commit removes the `std::local_data` module in favor of a new
`std::thread_local` module providing thread local storage. The module provides
two variants of TLS: one which owns its contents and one which is based on
scoped references. Each implementation has pros and cons listed in the
documentation.
Both flavors have accessors through a function called `with` which yield a
reference to a closure provided. Both flavors also panic if a reference cannot
be yielded and provide a function to test whether an access would panic or not.
This is an implementation of [RFC 461][rfc] and full details can be found in
that RFC.
This is a breaking change due to the removal of the `std::local_data` module.
All users can migrate to the new thread local system like so:
thread_local!(static FOO: Rc<RefCell<Option<T>>> = Rc::new(RefCell::new(None)))
The old `local_data` module inherently contained the `Rc<RefCell<Option<T>>>` as
an implementation detail which must now be explicitly stated by users.
[rfc]: https://github.com/rust-lang/rfcs/pull/461
[breaking-change]
A single impl supports all of `[T]`, `Vec<T>` and `CVec<T>`.
Once `Iterable` is implemented, we will prefer it to `SlicePrelude`.
But the `with_capacity()` part might become tricky.
This change applies the conventions to unwrap listed in [RFC 430][rfc] to rename
non-failing `unwrap` methods to `into_inner`. This is a breaking change, but all
`unwrap` methods are retained as `#[deprecated]` for the near future. To update
code rename `unwrap` method calls to `into_inner`.
[rfc]: https://github.com/rust-lang/rfcs/pull/430
[breaking-change]
Closes#13159
cc #19091
This PR:
- makes rustdoc colour trait methods like other functions in search results;
- makes rustdoc display `extern crate` statements with the new `as` syntax instead of the old `=` syntax;
- changes rustdoc to list constants and statics in a way that is more similar to functions and modules and show their full definition and documentation on their own page, fixing #19046:
![Constant listing](https://i.imgur.com/L4ZTOCN.png)
![Constant page](https://i.imgur.com/RcjZfCv.png)
Closes https://github.com/rust-lang/rust/issues/19077
I would appreciate any guidance on how to write a test for this. I saw some examples in `test/pretty`, but there are different ways to test... With or without `.pp` files, with a `pp-exact` comment, etc.
This breaks code like
```
let t = (42i, 42i);
... t.0::<int> ...;
```
Change this code to not contain an unused type parameter. For example:
```
let t = (42i, 42i);
... t.0 ...;
```
Closes https://github.com/rust-lang/rust/issues/19096
[breaking-change]
r? @aturon