Use `assert_unsafe_precondition` for `char::from_u32_unchecked`
Use `assert_unsafe_precondition` in `char::from_u32_unchecked` so that it can be stabilized as `const`.
Add -Zuse-sync-unwind
Currently Rust uses async unwind by default, but async unwind will bring non-negligible size overhead. it would be nice to allow users to choose this.
In addition, async unwind currently prevents LLVM from generate compact unwind for MachO, if one wishes to generate compact unwind for MachO, then also needs this flag.
Rollup of 10 pull requests
Successful merges:
- #118903 (Improved support of collapse_debuginfo attribute for macros.)
- #119033 (coverage: `llvm-cov` expects column numbers to be bytes, not code points)
- #119598 (Fix a typo in core::ops::Deref's doc)
- #119660 (remove an unnecessary stderr-per-bitwidth)
- #119663 (tests: Normalize `\r\n` to `\n` in some run-make tests)
- #119681 (coverage: Anonymize line numbers in branch views)
- #119704 (Fix two variable binding issues in lint let_underscore)
- #119725 (Add helper for when we want to know if an item has a host param)
- #119738 (Add `riscv32imafc-esp-espidf` tier 3 target for the ESP32-P4.)
- #119740 (Remove crossbeam-channel)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove crossbeam-channel
The standard library's std::sync::mpsc basically is a crossbeam channel, and for the use case here will definitely suffice. This drops this dependency from librustc_driver.
Add helper for when we want to know if an item has a host param
r? ````@fmease```` since you're a good reviewer and no good deed goes unpunished
This helper will see far more usages as built-in traits get constified.
coverage: Anonymize line numbers in branch views
Extracted from #118305, as this is now the only part of that PR that needs to touch compiletest.
---
Coverage tests run the `llvm-cov` tool to generate a coverage report for a test program, and then compare the report against a known-good snapshot.
We use the `anonymize_coverage_line_numbers` function to replace line numbers in coverage reports with `LL`, so that they are less sensitive to lines being added or removed. This PR augments the existing code by making it also support the slightly different line number syntax used when reporting branch regions.
Currently the compiler never emits branch regions, so there is no way to write a coverage test that makes use of this new capability. Instead, I've added a unit test that checks against some sample reports taken from #118305. That unit test can be removed when some form of branch coverage support gets merged, and real branch coverage tests are added to the coverage test suite.
(I have also manually tested this change as part of my draft branch-coverage PR.)
tests: Normalize `\r\n` to `\n` in some run-make tests
The output is produced by printf from C code in these cases, and printf prints in text mode, which means `\n` will be printed as `\r\n` on Windows.
In --bless mode the new output with `\r\n` will replace expected output in `tests/run-make/raw-dylib-*\output.txt` files, which use \n, always resulting in dirty files in the repo.
remove an unnecessary stderr-per-bitwidth
also update some regexp, `a(lloc)?` would no longer match now that we have compiletest itself do alloc ID normalization.
r? ````@oli-obk````
coverage: `llvm-cov` expects column numbers to be bytes, not code points
Normally the compiler emits column numbers as a 1-based number of Unicode code points.
But when we embed coverage mappings for `-Cinstrument-coverage`, those mappings will ultimately be read by the `llvm-cov` tool. That tool assumes that column numbers are 1-based numbers of *bytes*, and relies on that assumption when slicing up source code to apply highlighting (in HTML reports, and in text-based reports with colour).
For the very common case of all-ASCII source code, bytes and code points are the same, so the difference isn't noticeable. But for code that contains non-ASCII characters, emitting column numbers as code points will result in `llvm-cov` slicing strings in the wrong places, producing mangled output or fatal errors.
(See https://github.com/taiki-e/cargo-llvm-cov/issues/275 as an example of what can go wrong.)
Improved support of collapse_debuginfo attribute for macros.
Added walk_chain_collapsed function to consider collapse_debuginfo attribute in parent macros in call chain.
Fixed collapse_debuginfo attribute processing for cranelift (there was if/else branches error swap).
cc https://github.com/rust-lang/rust/issues/100758
Consuming `emit`
This PR makes `DiagnosticBuilder::emit` consuming, i.e. take `self` instead of `&mut self`. This is good because it doesn't make sense to emit a diagnostic twice.
This requires some changes to `DiagnosticBuilder` method changing -- every existing non-consuming chaining method gets a new consuming partner with a `_mv` suffix -- but permits a host of beneficial follow-up changes: more concise code through more chaining, removal of redundant diagnostic construction API methods, and removal of machinery to track the possibility of a diagnostic being emitted multiple times.
r? `@compiler-errors`
They are no longer used, because
`{DiagCtxt,DiagCtxtInner}::emit_diagnostic` are used everywhere instead.
This also means `track_diagnostic` can become consuming.
Currently it's used for two dynamic checks:
- When a diagnostic is emitted, has it been emitted before?
- When a diagnostic is dropped, has it been emitted/cancelled?
The first check is no longer need, because `emit` is consuming, so it's
impossible to emit a `DiagnosticBuilder` twice. The second check is
still needed.
This commit replaces `DiagnosticBuilderState` with a simpler
`Option<Box<Diagnostic>>`, which is enough for the second check:
functions like `emit` and `cancel` can take the `Diagnostic` and then
`drop` can check that the `Diagnostic` was taken.
The `DiagCtxt` reference from `DiagnosticBuilderState` is now stored as
its own field, removing the need for the `dcx` method.
As well as making the code shorter and simpler, the commit removes:
- One (deprecated) `ErrorGuaranteed::unchecked_claim_error_was_emitted`
call.
- Two `FIXME(eddyb)` comments that are no longer relevant.
- The use of a dummy `Diagnostic` in `into_diagnostic`.
Nice!
The existing uses are replaced in one of three ways.
- In a function that also has calls to `emit`, just rearrange the code
so that exactly one of `delay_as_bug` or `emit` is called on every
path.
- In a function returning a `DiagnosticBuilder`, use
`downgrade_to_delayed_bug`. That's good enough because it will get
emitted later anyway.
- In `unclosed_delim_err`, one set of errors is being replaced with
another set, so just cancel the original errors.
The old code was very hard to understand, involving an
`emit_without_consuming` call *and* a `delay_as_bug_without_consuming`
call.
With slight changes both calls can be avoided. Not creating the error
until later is crucial, as is the early return in the `if recovered`
block.
It took me some time to come up with this reworking -- it went through
intermediate states much further from the original code than this final
version -- and it's isn't obvious at a glance that it is equivalent. But
I think it is, and the unchanged test behaviour is good supporting
evidence.
The commit also changes `check_trailing_angle_brackets` to return
`Option<ErrorGuaranteed>`. This provides a stricter proof that it
emitted an error message than asserting `dcx.has_errors().is_some()`,
which would succeed if any error had previously been emitted anywhere.
It's not clear why this was here, because the created error is returned
as a normal error anyway.
Nor is it clear why removing the call works. The change doesn't affect
any tests; `tests/ui/parser/issues/issue-102182-impl-trait-recover.rs`
looks like the only test that could have been affected.
Instead of taking `seq` as a mutable reference,
`maybe_recover_struct_lit_bad_delims` now consumes `seq` on the recovery
path, and returns `seq` unchanged on the non-recovery path. The commit
also combines an `if` and a `match` to merge two identical paths.
Also change `recover_seq_parse_error` so it receives a `PErr` instead of
a `PResult`, because all the call sites now handle the `Ok`/`Err`
distinction themselves.
In this parsing recovery function, we only need to emit the previously
obtained error message and mark `expr` as erroneous in the case where we
actually recover.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
macro_rules: Add an expansion-local cache to span marker
Most tokens in a macro body typically have the same syntax context.
So the cache should usually be hit.
This change can either be combined with https://github.com/rust-lang/rust/pull/119689, or serve as its alternative, depending on perf results.
The standard library's std::sync::mpsc basically is a crossbeam channel,
and for the use case here will definitely suffice. This drops this
dependency from librustc_driver.
Unions are not `PointerLike`
I introduced the `PointerLike` trait to enforce `dyn*` coercions only from types that share the same ABI as a pointer. On top of needing to be scalar, they also should not be unions, since CTFE chokes on scalar reads for union types.
Fixes#119695
Impl trait diagnostic tweaks
1. Tweak some names for `impl Trait` being used in the wrong position
2. Remove two helper functions that are no longer needed since RPITIT is stable, and which causes matches to be a bit obtuse.
3. Split and fix the part where the error notes that it's "only allowed in XX"
Fixes#119629
Rewrite `pin` module documentation to clarify usage and invariants
The documentation of `pin` today does not give a complete treatment of pinning from first principles, nor does it adequately help build intuition and understanding for how the different elements of the pinning story fit together.
This rewrite attempts to address these in a way that makes the concept more approachable while also making the documentation more normative.
This PR picks up where `@mcy` left off in #88500 (thanks to him for the original work and `@Manishearth` for mentioning it such that I originally found it). I've directly incorporated much of the feedback left on the original PR and have rewritten and changed some of the main conceits of the prose to better adhere to the feedback from the reviewers on that PR or just explain something in (hopefully) a better way.