The root cause was fixed upstream in LLVM main. This adds a reminder to revert the workaround once the LLVM rustc depends on is new enough. Since I'm not sure how such optimizations get routed to LLVM releases, I used the conservative assumption that it will only show up with LLVM 13.
Stabilize `peekable_peek_mut`
Resolves#78302. Also adds some documentation on `std::iter::Iterator::peekable()` regarding the new method.
The feature was added in #77491 in Nov' 20, which is recently, but the feature seems reasonably small. Never did a stabilization-pr, excuse my ignorance if there is a protocol I'm not aware of.
Improve links in inline code in `core::pin`.
## Context
So I recently opened #80720. That PR uses HTML-based `<code>foo</code>` syntax in place of `` `foo` `` for some inline code. It looks like usage of `<code>` tags in doc comments is without precedent in the standard library, but the HTML-based syntax has an important advantage:
You can write something like
```
<code>[Box]<[Option]\<T>></code>
```
which becomes: <code>[Box]<[Option]\<T>></code>, whereas with ordinary backtick syntax, you cannot create links for a substring of an inline code block.
## Problem
I recalled (from my own experience) that a way to partially work around this limitation is to do something like
```
[`Box`]`<`[`Option`]`<T>>`
```
which looks like this: [`Box`]`<`[`Option`]`<T>>` _(admitted, it looks even worse on GitHub than in `rustdoc`’s CSS)_.
[Box]: https://doc.rust-lang.org/std/boxed/struct.Box.html "Box"
[`Box`]: https://doc.rust-lang.org/std/boxed/struct.Box.html "Box"
[Option]: https://doc.rust-lang.org/std/option/enum.Option.html "Option"
[`Option`]: https://doc.rust-lang.org/std/option/enum.Option.html "Option"
[Pin]: https://doc.rust-lang.org/std/pin/struct.Pin.html "Pin"
[&mut]: https://doc.rust-lang.org/std/primitive.reference.html "mutable reference"
So I searched the standard library and found that e.g. the [std::pin](https://doc.rust-lang.org/std/pin/index.html) module documentation uses this hack/workaround quite a bit, with types like <code>[Pin]<[Box]\<T>></code> or <code>[Pin]<[&mut] T>></code>. Although the way they look like in this sentence is what I would like them to look like, not what they currently look.
### Status Quo
Here’s a screenshot of what it currently looks like:
![Screenshot_20210105_202751](https://user-images.githubusercontent.com/3986214/103692608-4a978780-4f98-11eb-9451-e13622b2e3c0.png)
With a few HTML-style code blocks, we can fix all the spacing issues in the above screenshot that are due usage of this hack/workaround of putting multiple code blocks right next to each other being used.
### after d3915c555e:
![Screenshot_20210105_202932](https://user-images.githubusercontent.com/3986214/103692688-6f8bfa80-4f98-11eb-9be5-9b370eaef644.png)
There’s still a problem of inconsistency. Especially in a sentence such as
> A [`Pin<P>`][Pin] where `P: Deref` should be considered as a "`P`-style pointer" to _[...]_
looks weird with the variable `P` having different colors (and `Deref` has a different color from before where it was a link, too). Or compare the difference of <code>[Pin]<[Box]\<T>></code> vs [`Box<T>`][Box] where one time the variable is part of the link and the other time it isn’t.
_Note: Color differences show even **more strongly** when the ayu theme is used, while they are a bit less prominent in the light theme than they are in the dark theme, which is the one used for these screenshots._
This is why I’ve added the next commit
### after ceaeb249a3
![Screenshot_20210105_203113](https://user-images.githubusercontent.com/3986214/103693496-ab738f80-4f99-11eb-942d-29dace459734.png)
pulling all the type parameters out of their links, and also the last commit with clearly visible changes
### after 87ac118ba3
![Screenshot_20210105_203252](https://user-images.githubusercontent.com/3986214/103693625-e5dd2c80-4f99-11eb-91b7-470c37934e7e.png)
where more links are added, removing e.g. the inconsistency with `Deref`’s color in e.g. `P: Deref` that I already mentioned above.
## Discussion
I am aware that this PR may very well be overkill. If for now only the first commit (plus the fix for the `Drop` link in e65385fbfa, the link titles 684edf7a70 as far as they apply, and a few of the line-break changes) are wanted, I can reduce this PR to just those changes. I personally find the rendered result with all these changes very nice though. On the other hand, all these `<code>` tags are not very nice in the source code, I’ll admit.
Perhaps alternative solutions could be preferred, such as `rustdoc` support for merging subsequent inline code blocks so that all the cases that currently use workarounds rendered as [`Box`]`<`[`Option`]`<T>>` automatically become <code>[Box]<[Option]\<T>></code> without any need for further changes. Even in this case, having a properly formatted, better looking example in the standard library docs could help motivate such a change to `rustdoc` by prodiving an example of the expected results and also the already existing alternative (i.e. using `<code>`). On the other hand, `` [`Box`]`<`[`Option`]`<T>>` `` isn’t particularly nice-looking source code either. I’m not even sure if I wouldn’t actually find the version `<code>[Box]<[Option]\<T>></code>` cleaner to read.
`@rustbot` modify labels: T-doc, T-rustdoc
Add more info for common trait resolution and async/await errors
* Suggest `Pin::new`/`Box::new`/`Arc::new`/`Box::pin` in more cases
* Point at `impl` and type defs introducing requirements on E0277
Stabilize cmp_min_max_by
I would like to propose cmp::{min_by, min_by_key, max_by, max_by_key}
for stabilization.
These are relatively simple and seemingly uncontroversial functions and
have been unchanged in unstable for a while now.
Closes: #64460
I would like to propose cmp::{min_by, min_by_key, max_by, max_by_key}
for stabilization.
These are relatively simple and seemingly uncontroversial functions and
have been unchanged in unstable for a while now.
Add strong_count mutation methods to Rc
The corresponding methods were stabilized on `Arc` in #79285 (tracking: #71983). This patch implements and stabilizes identical methods on the `Rc` types as well.
Use `#[inline(always)]` on trivial UnsafeCell methods
UnsafeCell is the standard building block for shared mutable data
structures. UnsafeCell should add zero overhead compared to using raw
pointers directly.
Some reports suggest that debug builds, or even builds at opt-level 1,
may not always be inlining its methods. Mark the methods as
`#[inline(always)]`, since once inlined the methods should result in no
actual code other than field accesses.
Bump bootstrap to 1.52 beta
This includes the standard bump, but also a workaround for new cargo behavior around clearing out the doc directory when the rustdoc version changes.
core: disable `ptr::swap_nonoverlapping_one`'s block optimization on SPIR-V.
SPIR-V primarily supports what it calls the "Logical addressing model" (and AFAIK for graphical shaders it's the only option), and what that implies is that there is no "memory" to uniformly address at some byte/word level, and that you can't really talk about values having a "raw representation" in terms of sequences of bytes. Therefore, the "block"-wise swapping optimization employed by `ptr::swap_nonoverlapping_one` (where a "block" is 32 bytes, currently), is fundamentally incompatible with SPIR-V "memory".
As such, [Rust-GPU](https://github.com/EmbarkStudios/rust-gpu/)'s `rustc_codegen_spirv` backend cannot currently allow the use of `ptr::swap_nonoverlapping_one` - but that comes at a great price, since it's the building block of `mem::{swap,replace}`, and those in turn are used by e.g. `Option::take` and `Range`'s `Iterator` implementation (the latter blocking the use of `for i in 0..n` loops).
There's 4 options I can see in terms of supporting `ptr::swap_nonoverlapping_one` in `rustc_codegen_spirv`:
* legalize the block-wise swap loop back into swapping whole values, for SPIR-V
* this is made borderline impossible by the fact that the size of the state "on the stack" is a block, and has to be expanded back to the appropriate size of the value being swapped, so in practice this would have to effectively pattern-match on the exact shape of the block-wise swapping algorithm, as a roundabout way of "patching `core::ptr` on the fly"
* (**this PR**) disable the block-wise swap optimization altogether when `#[cfg(target_arch = "spirv")`
* I've tested it and it does in fact allow compiling `for i in 0..n` loops, which was my primary motivation
* main downside IMO is the fact that `core` now acknowledges an out-of-tree backend
* as a counterpoint, any attempt to compile Rust to SPIR-V would run into this problem, one way or another
* only enable the block-wise swap optimization on targets where it's been empirically proven to be an improvement
* would avoid any surprises in terms of potentially-broken/inefficient codegen, in general
* however, it may be universally applicable (thanks to caches), even if the optimal block size could differ
* move low-level swapping into an intrinsic, where the backend can choose any optimization approach it wants
* this also has an impact on MIR optimizations (cc ``@rust-lang/wg-mir-opt)`` - which currently cannot hope to make sense of e.g. `Option::take` despite it being effectively `_0 = *_1;` `*_1 = None;` `return;`
* long-term this is my preferred approach, and I can start working on it if that's desired, but I wanted to confirm that this swapping optimization is the final blocker for [Rust-GPU](https://github.com/EmbarkStudios/rust-gpu/) supporting e.g. range `for` loops
r? ``@nagisa`` cc ``@rust-lang/libs``
UnsafeCell is the standard building block for shared mutable data
structures. UnsafeCell should add zero overhead compared to using raw
pointers directly.
Some reports suggest that debug builds, or even builds at opt-level 1,
may not always be inlining its methods. Mark the methods as
`#[inline(always)]`, since once inlined the methods should result in no
actual code other than field accesses.
BTree: move blocks around in node.rs
Without changing any names or implementation, reorder some members:
- Move down the ones defined long ago on the demised `struct Root`, to below the definition of their current host `struct NodeRef`.
- Move up some defined on `struct NodeRef` that are interspersed with those defined on `struct Handle`.
- Move up the `correct_…` methods squeezed between the two flavours of `push`.
- Move the unchecked static downcasts (`cast_to_…`) after the upcasts (`forget_`) and the (weirdly named) dynamic downcasts (`force`).
r? ````@Mark-Simulacrum````
BTree: no longer search arrays twice to check Ord
A possible addition to / partial replacement of #83147: no longer linearly search the upper bound of a range in the initial portion of the keys we already know are below the lower bound.
- Should be faster: fewer key comparisons at the cost of some instructions dealing with offsets
- Makes code a little more complicated.
- No longer detects ill-defined `Ord` implementations, but that wasn't a publicised feature, and was quite incomplete, and was only done in the `range` and `range_mut` methods.
r? `@Mark-Simulacrum`
Document "standard" conventions for error messages
These are currently documented in the API guidelines:
https://rust-lang.github.io/api-guidelines/interoperability.html#error-types-are-meaningful-and-well-behaved-c-good-err
I think it makes sense to uplift this guideline (in a milder form) into
std docs. Printing and producing errors is something that even
non-expert users do frequently, so it is useful to give at least some
indication of what a typical error message looks like.
Fix stack overflow detection on FreeBSD 11.1+
Beginning with FreeBSD 10.4 and 11.1, there is one guard page by
default. And the stack autoresizes, so if Rust allocates its own guard
page, then FreeBSD's will simply move up one page. The best solution is
to just use the OS's guard page.
Fix double-drop in `Vec::from_iter(vec.into_iter())` specialization when items drop during panic
This fixes the double-drop but it leaves a behavioral difference compared to the default implementation intact: In the default implementation the source and the destination vec are separate objects, so they get dropped separately. Here they share an allocation and the latter only exists as a pointer into the former. So if dropping the former panics then this fix will leak more items than the default implementation would. Is this acceptable or should the specialization also mimic the default implementation's drops-during-panic behavior?
Fixes#83618
`@rustbot` label T-libs-impl
Rework `std::sys::windows::alloc`
I came across https://github.com/rust-lang/rust/pull/76676#discussion_r488729990, which points out that there was unsound code in the Windows alloc code, creating a &mut to possibly uninitialized memory. I reworked the code so that that particular issue does not occur anymore, and started adding more documentation and safety comments.
Full list of changes:
- moved and documented the relevant Windows Heap API functions
- refactor `allocate_with_flags` to `allocate` (and remove the other helper functions), which now takes just a `bool` if the memory should be zeroed
- add checks for if `GetProcessHeap` returned null
- add a test that checks if the size and alignment of a `Header` are indeed <= `MIN_ALIGN`
- add `#![deny(unsafe_op_in_unsafe_fn)]` and the necessary unsafe blocks with safety comments
I feel like I may have overdone the documenting, the unsoundness fix is the most important part; I could spit this PR up in separate parts.
Fix comment typo in once.rs
I believe I came across a minor typo in a comment. I am not particularly familiar with this part of the codebase, but I have read the surrounding code as well as the referenced `park` and `unpark` functions, and I believe my proposed change is true to the intended meaning of the comment.
I intentionally tried to keep the change as minimal as possible. If I have the maintainers' permission, I'd also love to add a comma to improve readability as follows: `Luckily ``park`` comes with the guarantee that if it got an ``unpark`` just before on an unparked thread, it does not park.`
Rename `#[doc(spotlight)]` to `#[doc(notable_trait)]`
Fixes#80936.
"spotlight" is not a very specific or self-explaining name.
Additionally, the dialog that it triggers is called "Notable traits".
So, "notable trait" is a better name.
* Rename `#[doc(spotlight)]` to `#[doc(notable_trait)]`
* Rename `#![feature(doc_spotlight)]` to `#![feature(doc_notable_trait)]`
* Update documentation
* Improve documentation
r? `@Manishearth`
Beginning with FreeBSD 10.4 and 11.1, there is one guard page by
default. And the stack autoresizes, so if Rust allocates its own guard
page, then FreeBSD's will simply move up one page. The best solution is
to just use the OS's guard page.
panic early when `TrustedLen` indicates a `length > usize::MAX`
Changes `TrustedLen` specializations to immediately panic when `size_hint().1 == None`.
As far as I can tell this is ~not a change~ a minimal change in observable behavior for anything except ZSTs because the fallback path would go through `extend_desugared()` which tries to `reserve(lower_bound)` which already is `usize::MAX` and that would also lead to a panic. Before it might have popped somewhere between zero and a few elements from the iterator before panicking while it now panics immediately.
Overall this should reduce codegen by eliminating the fallback paths.
While looking into the `with_capacity()` behavior I also noticed that its documentation didn't have a *Panics* section, so I added that.
Disallow octal format in Ipv4 string
In its original specification, leading zero in Ipv4 string is interpreted
as octal literals. So a IP address 0127.0.0.1 actually means 87.0.0.1.
This confusion can lead to many security vulnerabilities. Therefore, in
[IETF RFC 6943], it suggests to disallow octal/hexadecimal format in Ipv4
string all together.
Existing implementation already disallows hexadecimal numbers. This commit
makes Parser reject octal numbers.
Fixes#83648.
[IETF RFC 6943]: https://tools.ietf.org/html/rfc6943#section-3.1.1
Improve pointer arithmetic docs
* Add slightly more detailed definition of "allocated object" to the module docs, and link it from everywhere.
* Clarify the "remains attached" wording a bit (at least I hope this is clearer).
* Remove the sentence about using integer arithmetic; this seems to confuse people even if it is technically correct.
As usual, the edit needs to be done in a dozen places to remain consistent, I hope I got them all.
Clean up Vec's benchmarks
The Vec benchmarks need a lot of love. I sort of noticed this in https://github.com/rust-lang/rust/pull/83357 but the overall situation is much less awesome than I thought at the time. The first commit just removes a lot of asserts and does a touch of other cleanup.
A number of these benchmarks are poorly-named. For example, `bench_map_fast` is not in fact fast, `bench_rev_1` and `bench_rev_2` are vague, `bench_in_place_zip_iter_mut` doesn't call `zip`, `bench_in_place*` don't do anything in-place... Should I fix these, or is there tooling that depend on the names not changing?
I've also noticed that `bench_rev_1` and `bench_rev_2` are remarkably fragile. It looks like poking other code in `Vec` can cause the codegen of this benchmark to switch to a version that has almost exactly half its current throughput and I have absolutely no idea why.
Here's the fast version:
```asm
0.69 │110: movdqu -0x20(%rbx,%rdx,4),%xmm0
1.76 │ movdqu -0x10(%rbx,%rdx,4),%xmm1
0.71 │ pshufd $0x1b,%xmm1,%xmm1
0.60 │ pshufd $0x1b,%xmm0,%xmm0
3.68 │ movdqu %xmm1,-0x30(%rcx)
14.36 │ movdqu %xmm0,-0x20(%rcx)
13.88 │ movdqu -0x40(%rbx,%rdx,4),%xmm0
6.64 │ movdqu -0x30(%rbx,%rdx,4),%xmm1
0.76 │ pshufd $0x1b,%xmm1,%xmm1
0.77 │ pshufd $0x1b,%xmm0,%xmm0
1.87 │ movdqu %xmm1,-0x10(%rcx)
13.01 │ movdqu %xmm0,(%rcx)
38.81 │ add $0x40,%rcx
0.92 │ add $0xfffffffffffffff0,%rdx
1.22 │ ↑ jne 110
```
And the slow one:
```asm
0.42 │9a880: movdqa %xmm2,%xmm1
4.03 │9a884: movq -0x8(%rbx,%rsi,4),%xmm4
8.49 │9a88a: pshufd $0xe1,%xmm4,%xmm4
2.58 │9a88f: movq -0x10(%rbx,%rsi,4),%xmm5
7.02 │9a895: pshufd $0xe1,%xmm5,%xmm5
4.79 │9a89a: punpcklqdq %xmm5,%xmm4
5.77 │9a89e: movdqu %xmm4,-0x18(%rdx)
15.74 │9a8a3: movq -0x18(%rbx,%rsi,4),%xmm4
3.91 │9a8a9: pshufd $0xe1,%xmm4,%xmm4
5.04 │9a8ae: movq -0x20(%rbx,%rsi,4),%xmm5
5.29 │9a8b4: pshufd $0xe1,%xmm5,%xmm5
4.60 │9a8b9: punpcklqdq %xmm5,%xmm4
9.81 │9a8bd: movdqu %xmm4,-0x8(%rdx)
11.05 │9a8c2: paddq %xmm3,%xmm0
0.86 │9a8c6: paddq %xmm3,%xmm2
5.89 │9a8ca: add $0x20,%rdx
0.12 │9a8ce: add $0xfffffffffffffff8,%rsi
1.16 │9a8d2: add $0x2,%rdi
2.96 │9a8d6: → jne 9a880 <<alloc::vec::Vec<T,A> as core::iter::traits::collect::Extend<&T>>::extend+0xd0>
```
In its original specification, leading zero in Ipv4 string is interpreted
as octal literals. So a IP address 0127.0.0.1 actually means 87.0.0.1.
This confusion can lead to many security vulnerabilities. Therefore, in
[IETF RFC 6943], it suggests to disallow octal/hexadecimal format in Ipv4
string all together.
Existing implementation already disallows hexadecimal numbers. This commit
makes Parser reject octal numbers.
Fixes#83648.
[IETF RFC 6943]: https://tools.ietf.org/html/rfc6943#section-3.1.1
unix: Fix feature(unix_socket_ancillary_data) on macos and other BSDs
This adds support for CMSG handling on macOS and fixes it on OpenBSD and possibly other BSDs.
When traversing the CMSG list, the previous code had an exception for Android where the next element after the last pointer could point to the first pointer instead of NULL. This is actually not specific to Android: the `libc::CMSG_NXTHDR` implementation for Linux and emscripten have a special case to return NULL when the length of the previous element is zero; most other implementations simply return the previous element plus a zero offset in this case.
This MR makes the check non-optional which fixes CMSG handling and a possible endless loop on such systems; tested with file descriptor passing on OpenBSD, Linux, and macOS.
This MR additionally adds `SocketAncillary::is_empty` because clippy is right that it should be added.
This belongs to the `feature(unix_socket_ancillary_data)` tracking issue: https://github.com/rust-lang/rust/issues/76915
r? `@joshtriplett`
escape_ascii take 2
The previous PR, #73111 was closed for inactivity; since I've had trouble in the past reopening closed PRs, I'm just making a new one.
I'm still running the tests locally but figured I'd open the PR in the meantime. Will fix whatever errors show up so we don't have to wait again for this.
r? ``@m-ou-se``
alloc: Added `as_slice` method to `BinaryHeap` collection
I initially asked about whether it is useful addition on https://internals.rust-lang.org/t/should-i-add-as-slice-method-to-binaryheap/13816, and it seems there were no objections, so went ahead with this PR.
> There is [`BinaryHeap::into_vec`](https://doc.rust-lang.org/std/collections/struct.BinaryHeap.html#method.into_vec), but it consumes the value. I wonder if there is API design limitation that should be taken into account. Implementation-wise, the inner buffer is just a Vec, so it is trivial to expose as_slice from it.
Please, guide me through if I need to add tests or something else.
UPD: Tracking issue #83659
may not -> might not
may not -> might not
"may not" has two possible meanings:
1. A command: "You may not stay up past your bedtime."
2. A fact that's only sometimes true: "Some cities may not have bike lanes."
In some cases, the meaning is ambiguous: "Some cars may not have snow
tires." (do the cars *happen* to not have snow tires, or is it
physically impossible for them to have snow tires?)
This changes places where the standard library uses the "description of
fact" meaning to say "might not" instead.
This is just `std::vec` for now - if you think this is a good idea I can
convert the rest of the standard library.
Adjust documentation links for slice::make_ascii_*case
The documentation for the functions `slice::to_ascii_lowercase` and `slice::to_ascii_uppercase` contain the suggestion
> To lowercase the value in-place, use `make_ascii_lowercase`
however the link to the suggested method takes you to the page for `u8`, rather than the method of that name on the same page.
Instruct LLVM that binary_search returns a valid index
This allows removing bound checks when the return value of `binary_search` is used to index into the slice it was call on. I also added a codegen test for this, not sure if it's the right thing to do (I didn't find anything on the dev guide), but it felt so.
"may not" has two possible meanings:
1. A command: "You may not stay up past your bedtime."
2. A fact that's only sometimes true: "Some cities may not have bike lanes."
In some cases, the meaning is ambiguous: "Some cars may not have snow
tires." (do the cars *happen* to not have snow tires, or is it
physically impossible for them to have snow tires?)
This changes places where the standard library uses the "description of
fact" meaning to say "might not" instead.
This is just `std::vec` for now - if you think this is a good idea I can
convert the rest of the standard library.
Improve fs error open_from unix
Consistency for #79399
Suggested by JohnTitor
r? `@JohnTitor`
Not user if the error is too long now, do we handle long errors well?
Add function core::iter::zip
This makes it a little easier to `zip` iterators:
```rust
for (x, y) in zip(xs, ys) {}
// vs.
for (x, y) in xs.into_iter().zip(ys) {}
```
You can `zip(&mut xs, &ys)` for the conventional `iter_mut()` and
`iter()`, respectively. This can also support arbitrary nesting, where
it's easier to see the item layout than with arbitrary `zip` chains:
```rust
for ((x, y), z) in zip(zip(xs, ys), zs) {}
for (x, (y, z)) in zip(xs, zip(ys, zs)) {}
// vs.
for ((x, y), z) in xs.into_iter().zip(ys).zip(xz) {}
for (x, (y, z)) in xs.into_iter().zip((ys.into_iter().zip(xz)) {}
```
It may also format more nicely, especially when the first iterator is a
longer chain of methods -- for example:
```rust
iter::zip(
trait_ref.substs.types().skip(1),
impl_trait_ref.substs.types().skip(1),
)
// vs.
trait_ref
.substs
.types()
.skip(1)
.zip(impl_trait_ref.substs.types().skip(1))
```
This replaces the tuple-pair `IntoIterator` in #78204.
There is prior art for the utility of this in [`itertools::zip`].
[`itertools::zip`]: https://docs.rs/itertools/0.10.0/itertools/fn.zip.html
update array missing `IntoIterator` msg
fixes#82602
r? ```@estebank``` do you know whether we can use the expr span in `rustc_on_unimplemented`? The label isn't too great rn
make unaligned_references future-incompat lint warn-by-default
and also remove the safe_packed_borrows lint that it replaces.
`std::ptr::addr_of!` has hit beta now and will hit stable in a month, so I propose we start fixing https://github.com/rust-lang/rust/issues/27060 for real: creating a reference to a field of a packed struct needs to eventually become a hard error; this PR makes it a warn-by-default future-incompat lint. (The lint already existed, this just raises its default level.) At the same time I removed the corresponding code from unsafety checking; really there's no reason an `unsafe` block should make any difference here.
For references to packed fields outside `unsafe` blocks, this means `unaligned_refereces` replaces the previous `safe_packed_borrows` warning with a link to https://github.com/rust-lang/rust/issues/82523 (and no more talk about unsafe blocks making any difference). So behavior barely changes, the warning is just worded differently. For references to packed fields inside `unsafe` blocks, this PR shows a new future-incompat warning.
Closes https://github.com/rust-lang/rust/issues/46043 because that lint no longer exists.
Improve Debug implementations of Mutex and RwLock.
This improves the Debug implementations of Mutex and RwLock.
They now show the poison flag and use debug_non_exhaustive. (See #67364.)
Derive Debug for io::Chain instead of manually implementing it.
This derives Debug for io::Chain instead of manually implementing it.
The manual implementation has the same bounds, so I don't think there's any reason for a manual implementation. The names used in the derive implementation are even nicer (`first`/`second`) than the manual implementation (`t`/`u`), and include the `done_first` field too.
Fix Debug implementation for RwLock{Read,Write}Guard.
This would attempt to print the Debug representation of the lock that the guard has locked, which will try to lock again, fail, and just print `"<locked>"` unhelpfully.
After this change, this just prints the contents of the mutex, like the other smart pointers (and MutexGuard) do.
MutexGuard had this problem too: https://github.com/rust-lang/rust/issues/57702
ExitStatus: print "exit status: {}" rather than "exit code: {}" on unix
Proper Unix terminology is "exit status" (vs "wait status"). "exit
code" is imprecise on Unix and therefore unclear. (As far as I can
tell, "exit code" is correct terminology on Windows.)
This new wording is unfortunately inconsistent with the identifier
names in the Rust stdlib.
It is the identifier names that are wrong, as discussed at length in eg
https://doc.rust-lang.org/nightly/std/process/struct.ExitStatus.htmlhttps://doc.rust-lang.org/nightly/std/os/unix/process/trait.ExitStatusExt.html
Unfortunately for API stability reasons it would be a lot of work, and
a lot of disruption, to change the names in the stdlib (eg to rename
`std::process::ExitStatus` to `std::process::ChildStatus` or
something), but we should fix the message output. Many (probably
most) readers of these messages about exit statuses will be users and
system administrators, not programmers, who won't even know that Rust
has this wrong terminology.
So I think the right thing is to fix the documentation (as I have
already done) and, now, the terminology in the implementation.
This is a user-visible change to the behaviour of all Rust programs
which run Unix subprocesses. Hopefully no-one is matching against the
exit status string, except perhaps in tests.
Generalize and inline slice::fill specializations
This makes the memset specialization applicable to more types. And since the code now lives in a generic method it is also eligible for cross-crate inlining which should fix#83235
The manual implementation has the same bounds, so I don't think there's
any reason for a manual implementation. The names used in the derive
implementation are even nicer (`first`/`second`) than the manual
implementation (`t`/`u`), and include the `done_first` field too.
This would attempt to print the Debug representation of the lock that
the guard has locked, which will try to lock again, fail, and just print
"<locked>" unhelpfully.
After this change, this just prints the contents of the mutex, like the
other smart pointers (and MutexGuard) do.
Add IEEE 754 compliant fmt/parse of -0, infinity, NaN
This pull request improves the Rust float formatting/parsing libraries to comply with IEEE 754's formatting expectations around certain special values, namely signed zero, the infinities, and NaN. It also adds IEEE 754 compliance tests that, while less stringent in certain places than many of the existing flt2dec/dec2flt capability tests, are intended to serve as the beginning of a roadmap to future compliance with the standard. Some relevant documentation is also adjusted with clarifying remarks.
This PR follows from discussion in https://github.com/rust-lang/rfcs/issues/1074, and closes#24623.
The most controversial change here is likely to be that -0 is now printed as -0. Allow me to explain: While there appears to be community support for an opt-in toggle of printing floats as if they exist in the naively expected domain of numbers, i.e. not the extended reals (where floats live), IEEE 754-2019 is clear that a float converted to a string should be capable of being transformed into the original floating point bit-pattern when it satisfies certain conditions (namely, when it is an actual numeric value i.e. not a NaN and the original and destination float width are the same). -0 is given special attention here as a value that should have its sign preserved. In addition, the vast majority of other programming languages not only output `-0` but output `-0.0` here.
While IEEE 754 offers a broad leeway in how to handle producing what it calls a "decimal character sequence", it is clear that the operations a language provides should be capable of round tripping, and it is confusing to advertise the f32 and f64 types as binary32 and binary64 yet have the most basic way of producing a string and then reading it back into a floating point number be non-conformant with the standard. Further, existing documentation suggested that e.g. -0 would be printed with -0 regardless of the presence of the `+` fmt character, but it prints "+0" instead if given such (which was what led to the opening of #24623).
There are other parsing and formatting issues for floating point numbers which prevent Rust from complying with the standard, as well as other well-documented challenges on the arithmetic level, but I hope that this can be the beginning of motion towards solving those challenges.
Document that the SocketAddr memory representation is not stable
Intended to help out with #78802. Work has been put into finding and fixing code that assumes the memory layout of `SocketAddrV4` and `SocketAddrV6`. But it turns out there are cases where new code continues to make the same assumption ([example](96927dc2b7 (diff-917db3d8ca6f862ebf42726b23c72a12b35e584e497ebdb24e474348d7c6ffb6R610-R621))).
The memory layout of a type in `std` is never part of the public API. Unless explicitly stated I guess. But since that is invalidly relied upon by a considerable amount of code for these particular types, it might make sense to explicitly document this. This can be temporary. Once #78802 lands it does not make sense to rely on the layout any longer, and this documentation can also be removed.
Make # pretty print format easier to discover
# Rationale:
I use (cargo cult?) three formats in rust: `{}`, debug `{:?}`, and pretty-print debug `{:#?}`. I discovered `{:#?}` in some blog post or guide when I started working in Rust. While `#` is documented I think it is hard to discover. So taking the good advice of ```@carols10cents``` I am trying to improve the docs with a PR
As a reminder "pretty print" means that where `{:?}` will print something like
```
foo: { b1: 1, b2: 2}
```
`{:#?}` will prints something like
```
foo {
b1: 1
b2: 3
}
```
# Changes
Add an example to `fmt` to try and make it easier to discover `#`
This adds support for CMSG handling on macOS and fixes it on OpenBSD
and other BSDs.
When traversing the CMSG list, the previous code had an exception for
Android where the next element after the last pointer could point to
the first pointer instead of NULL. This is actually not specific to
Android: the `libc::CMSG_NXTHDR` implementation for Linux and
emscripten have a special case to return NULL when the length of the
previous element is zero; most other implementations simply return the
previous element plus a zero offset in this case.
This MR additionally adds `SocketAncillary::is_empty` because clippy
is right that it should be added.
This makes it a little easier to `zip` iterators:
```rust
for (x, y) in zip(xs, ys) {}
// vs.
for (x, y) in xs.into_iter().zip(ys) {}
```
You can `zip(&mut xs, &ys)` for the conventional `iter_mut()` and
`iter()`, respectively. This can also support arbitrary nesting, where
it's easier to see the item layout than with arbitrary `zip` chains:
```rust
for ((x, y), z) in zip(zip(xs, ys), zs) {}
for (x, (y, z)) in zip(xs, zip(ys, zs)) {}
// vs.
for ((x, y), z) in xs.into_iter().zip(ys).zip(xz) {}
for (x, (y, z)) in xs.into_iter().zip((ys.into_iter().zip(xz)) {}
```
It may also format more nicely, especially when the first iterator is a
longer chain of methods -- for example:
```rust
iter::zip(
trait_ref.substs.types().skip(1),
impl_trait_ref.substs.types().skip(1),
)
// vs.
trait_ref
.substs
.types()
.skip(1)
.zip(impl_trait_ref.substs.types().skip(1))
```
This replaces the tuple-pair `IntoIterator` in rust-lang/rust#78204.
There is prior art for the utility of this in [`itertools::zip`].
[`itertools::zip`]: https://docs.rs/itertools/0.10.0/itertools/fn.zip.html
Fixes#83046
The program
fn main() {
println!("{:?}", '"');
println!("{:?}", "'");
}
would previously print
'\"'
"\'"
With this patch it now prints:
'"'
"'"
Proper Unix terminology is "exit status" (vs "wait status"). "exit
code" is imprecise on Unix and therefore unclear. (As far as I can
tell, "exit code" is correct terminology on Windows.)
This new wording is unfortunately inconsistent with the identifier
names in the Rust stdlib.
It is the identifier names that are wrong, as discussed at length in eg
https://doc.rust-lang.org/nightly/std/process/struct.ExitStatus.htmlhttps://doc.rust-lang.org/nightly/std/os/unix/process/trait.ExitStatusExt.html
Unfortunately for API stability reasons it would be a lot of work, and
a lot of disruption, to change the names in the stdlib (eg to rename
`std::process::ExitStatus` to `std::process::ChildStatus` or
something), but we should fix the message output. Many (probably
most) readers of these messages about exit statuses will be users and
system administrators, not programmers, who won't even know that Rust
has this wrong terminology.
So I think the right thing is to fix the documentation (as I have
already done) and, now, the terminology in the implementation.
This is a user-visible change to the behaviour of all Rust programs
which run Unix subprocesses. Hopefully no-one is matching against the
exit status string, except perhaps in tests.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
Many of the Vec benchmarks assert what values should be produced by the
benchmarked code. In some cases, these asserts dominate the runtime of
the benchmarks they are in, causing the benchmarks to understate the
impact of an optimization or regression.
Add Result::into_err where the Ok variant is the never type
Equivalent of #66045 but for the inverse situation where `T: Into<!>` rather than `E: Into<!>`.
I'm using the same feature gate name. I can't see why one of these methods would be OK to stabilize but not the other.
Tracking issue: #61695
Remove Option::{unwrap_none, expect_none}.
This removes `Option::unwrap_none` and `Option::expect_none` since we're not going to stabilize them, see https://github.com/rust-lang/rust/issues/62633.
Closes#62633
stabilize debug_non_exhaustive
tracking issue: https://github.com/rust-lang/rust/issues/67364
but it is still an open question whether the other `Debug*` struct's should have a similar method. I would guess that would best be put underneath a new feature gate, as this one seems uncontroversial enough to stabilize as is
Expose str::SplitInclusive in alloc and therefore in std
This seems to have been omitted from the beginning when this feature was first introduced in 86bf96291d. Most users won't need to name this type which is probably why this wasn't noticed in the meantime.
See #83372 for a different but related bug.
### Notes for reviewers
I think I have got this right but TBH I am not very familiar with the relationship between core and std and so on. <strike>I also haven't don't any kind of test (not even a build) yet. I will do a local docs build to see that the type now appears in the std docs.</strike> I did a local docs build and it has made this type appear as `std::str::SplitInclusive` as expected
The linkification of the return value from `str::split_inclusive` teleports me to the online url for `core::str::SplitInclusive`. I think this may be a rustdoc anomaly (similar to #79630 maybe) but I am not sure. Perhaps it means I haven't done the `std` -> `core` referrence correctly.
I made this insta-stable since it seems like simply a bug. Please LMK if that is not right. *(edited to add:)* In particular, IDK how this ought to relate to the (?)current release process.
Add internal io::Error::new_const to avoid allocations.
This makes it possible to have a io::Error containing a message with zero allocations, and uses that everywhere to avoid the *three* allocations involved in `io::Error::new(kind, "message")`.
The function signature isn't perfect, because it needs a reference to the `&str`. So for now, this is just a `pub(crate)` function. Later, we'll be able to use `fn new_const<MSG: &'static str>(kind: ErrorKind)` to make that a bit better. (Then we'll also be able to use some ZST trickery if that would result in more efficient code.)
See https://github.com/rust-lang/rust/issues/83352
This seems to have been omitted from the beginning when this feature
was first introduced in 86bf96291d.
Most users won't need to name this type which is probably why this
wasn't noticed in the meantime.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
Add `debug-refcell` feature to libcore
See https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Attaching.20backtraces.20to.20RefCell/near/226273614
for some background discussion
This PR adds a new off-by-default feature `debug-refcell` to libcore.
When enabled, this feature stores additional debugging information in
`RefCell`. This information is included in the panic message when
`borrow()` or `borrow_mut()` panics, to make it easier to track down the
source of the issue.
Currently, we store the caller location for the earliest active borrow.
This has a number of advantages:
* There is only a constant amount of overhead per `RefCell`
* We don't need any heap memory, so it can easily be implemented in core
* Since we are storing the *earliest* active borrow, we don't need any
extra logic in the `Drop` implementation for `Ref` and `RefMut`
Limitations:
* We only store the caller location, not a full `Backtrace`. Until
we get support for `Backtrace` in libcore, this is the best tha we can
do.
* The captured location is only displayed when `borrow()` or
`borrow_mut()` panics. If a crate calls `try_borrow().unwrap()`
or `try_borrow_mut().unwrap()`, this extra information will be lost.
To make testing easier, I've enabled the `debug-refcell` feature by
default. I'm not sure how to write a test for this feature - we would
need to rebuild core from the test framework, and create a separate
sysroot.
Since this feature will be off-by-default, users will need to use
`xargo` or `cargo -Z build-std` to enable this feature. For users using
a prebuilt standard library, this feature will be disabled with zero
overhead.
I've created a simple test program:
```rust
use std::cell::RefCell;
fn main() {
let _ = std::panic::catch_unwind(|| {
let val = RefCell::new(true);
let _first = val.borrow();
let _second = val.borrow();
let _third = val.borrow_mut();
});
let _ = std::panic::catch_unwind(|| {
let val = RefCell::new(true);
let first = val.borrow_mut();
drop(first);
let _second = val.borrow_mut();
let _thid = val.borrow();
});
}
```
which produces the following output:
```
thread 'main' panicked at 'already borrowed: BorrowMutError at refcell_test.rs:6:26', refcell_test.rs:8:26
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
thread 'main' panicked at 'already mutably borrowed: BorrowError at refcell_test.rs:16:27', refcell_test.rs:18:25
```
"semantic equivalence" is too strong a phrasing here, which is why
actually explaining what kind of circumstances might produce a -0
was chosen instead.
This commit removes the previous mechanism of differentiating
between "Debug" and "Display" formattings for the sign of -0 so as
to comply with the IEEE 754 standard's requirements on external
character sequences preserving various attributes of a floating
point representation.
In addition, numerous tests are fixed.
See https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Attaching.20backtraces.20to.20RefCell/near/226273614
for some background discussion
This PR adds a new off-by-default feature `debug-refcell` to libcore.
When enabled, this feature stores additional debugging information in
`RefCell`. This information is included in the panic message when
`borrow()` or `borrow_mut()` panics, to make it easier to track down the
source of the issue.
Currently, we store the caller location for the earliest active borrow.
This has a number of advantages:
* There is only a constant amount of overhead per `RefCell`
* We don't need any heap memory, so it can easily be implemented in core
* Since we are storing the *earliest* active borrow, we don't need any
extra logic in the `Drop` implementation for `Ref` and `RefMut`
Limitations:
* We only store the caller location, not a full `Backtrace`. Until
we get support for `Backtrace` in libcore, this is the best tha we can
do.
* The captured location is only displayed when `borrow()` or
`borrow_mut()` panics. If a crate calls `try_borrow().unwrap()`
or `try_borrow_mut().unwrap()`, this extra information will be lost.
To make testing easier, I've enabled the `debug-refcell` feature by
default. I'm not sure how to write a test for this feature - we would
need to rebuild core from the test framework, and create a separate
sysroot.
Since this feature will be off-by-default, users will need to use
`xargo` or `cargo -Z build-std` to enable this feature. For users using
a prebuilt standard library, this feature will be disabled with zero
overhead.
I've created a simple test program:
```rust
use std::cell::RefCell;
fn main() {
let _ = std::panic::catch_unwind(|| {
let val = RefCell::new(true);
let _first = val.borrow();
let _second = val.borrow();
let _third = val.borrow_mut();
});
let _ = std::panic::catch_unwind(|| {
let val = RefCell::new(true);
let first = val.borrow_mut();
drop(first);
let _second = val.borrow_mut();
let _thid = val.borrow();
});
}
```
which produces the following output:
```
thread 'main' panicked at 'already borrowed: BorrowMutError { location: Location { file: "refcell_test.rs", line: 6, col: 26 } }', refcell_test.rs:8:26
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
thread 'main' panicked at 'already mutably borrowed: BorrowError { location: Location { file: "refcell_test.rs", line: 16, col: 27 } }', refcell_test.rs:18:25
```
Clarify non-exact length in the Iterator::take documentation
There's an example which demonstrates incomplete length case, but it'd be best to explain it right from the start.
Document panicking cases for integer division and remainder
This PR documents the cases when integer division and remainder operations panic. These operations panic in two cases: division by zero and overflow.
It's surprising that these operations always panic on overflow, unlike most other arithmetic operations, which panic on overflow only when `debug_assertions` is enabled. The panic on overflow for the remainder is also surprising because a return value of `0` would be reasonable in this case. ("Overflow" occurs only for `MIN % -1`.) Since the panics on overflow are somewhat surprising, they should be documented.
I guess it's worth asking: is panic on overflow (even when `debug_assertions` is disabled) the intended behavior? If not, what's the best way forward?
Add license metadata for std dependencies
These five crates are in the dependency tree of `std` but lack license metadata:
- `alloc`
- `core`
- `panic_abort`
- `panic_unwind`
- `unwind`
Querying the dependency tree of `std` is a useful thing to be able to do, since these crates will typically be linked into Rust binaries. Tools show the license fields missing, as seen in https://github.com/rust-lang/rust/issues/67014#issuecomment-782704534. This PR adds the license field for the five crates, based on the license of the `std` package and this repo as a whole. I also added the `repository` and `descriptions` fields, since those seem useful. For `description`, I copied text from top-level comments for the respective modules - except for `unwind` which has none.
I also note that https://github.com/rust-lang/rust/pull/73530 attempted to add license metadata for all crates in this repo, but was rejected because there was question about some of them. I hope that this smaller change, focusing only on the runtime dependencies, will be easier to review.
cc `@Mark-Simulacrum` `@Lokathor`
Fix inequality in docs for div_euclid
This commit fixes the statement of the inequality that the Euclidean remainder satisfies. (The remainder is guaranteed to be less than abs(rhs), not rhs.) It also rewords the documentation to make it a little easier to read.
(You might wonder why I've written `abs(rhs)` instead of `rhs.abs()`. Two reasons: first, the `rem_euclid` docs use `abs(rhs)` instead of `rhs.abs()`, and second, the absolute value here is the mathematical absolute value, not the the `.abs()` operation which may overflow.)
Move `std::sys::unix::platform` to `std::sys::unix::ext`
This moves the operating system dependent alias `platform` (`std::os::{linux, android, ...}`) from `std::sys::unix` to `std::sys::unix::ext` (a.k.a. `std::os::unix`), removing the need for compatibility code in `unix_ext` when documenting on another platform.
This is also a step in making it possible to properly move `std::sys::unix::ext` to `std::os::unix`, as ideally `std::sys` should not depend on the rest of `std`.
Fix invalid slice access in String::retain
As noted in #78499, the previous fix was technically still unsound because it accessed elements of a slice outside its bounds (even though they were still inside the same allocation). This PR addresses that concern by switching to a dropguard approach.
Implement TrustedLen and TrustedRandomAccess for Range<integer>, array::IntoIter, VecDequeue's iterators
This should make some `FromIterator` and `.zip()` specializations applicable in a few more cases.
``@rustbot`` label libs-impl
Make NonNull::as_ref (and friends) return refs with unbound lifetimes
# Rationale:
1. The documentation for all of these functions claims that this is what the functions already do, as they all come with this comment:
> You must enforce Rust's aliasing rules, *since the returned lifetime 'a is arbitrarily chosen* and does not necessarily reflect the actual lifetime of the data...
So I think it's just a bug that they weren't this way already. Note that had it not been for this part, I wouldn't be making this PR, so if we decide we won't take this change, I'll follow it up with a docs PR to fix this.
2. This is how the equivalent raw pointer functions behave.
They also take `self` and not `&self`/`&mut self`, but that can't be changed compatibly at this point. This is the next best thing.
3. Without this fix, often code that uses these methods will find it has to expand the lifetime of the result.
(I can't speak for others but even in unsafe-heavy code, needing to do this unexpectedly is a huge red flag -- if Rust thinks something should have a specific lifetime, I assume it's for a reason)
### Can this cause existing code to be unsound?
I'm confident this can't cause new unsoundness since the reference exists for at most its lifetime, but you get a borrow checker error if you do something that would require/allow the reference to exist past its lifetime.
Additionally, the aliasing rules of a reference only applies while the reference exists.
This *must* be the case, as it is required by the rules used by safe code. (That said, the documentation in this file sort of contradicts it, but I think it's just ambiguity between the lifetime `'a` in `&'a T` and lifetime of the `&'a T` reference itself...)
We are increasing the lifetime of these references, but they should already have hard bounds on that lifetime, or they'd have borrow checker errors.
(CC ``@RalfJung`` because I have gone and done the mistake where I say something definitive about aliasing in Rust which is honestly outside the group of things I should make definitive comments about).
# Caveats
1. This is insta-stable (except for on the unstable functions ofc). I don't think there's any other alternative.
2. I don't believe this is a breaking change in practice. In theory someone could be assigning `NonNull::as_ref` to a function pointer of type `fn(&NonNull<T>) -> &T`. Now they'd need to use a slightly different function pointer type which is (probably) incompatible. This seems pathological, but I guess crater could be used if there are concerns.
3. This has no tests. The old version didn't either that I saw. I could add some stuff that fails to compile without it, if that would be useful.
4. Sometimes the NLL borrow checker gives up and decides lifetimes live till the end of the scope, as opposed to the range where they're used. If this change can cause this to happen more, then my soundness rationale is wrong, and it's likely breaking.
In practice this seems super unlikely.
Anyway. That was a lot of typing.
Fixes https://github.com/rust-lang/rust/issues/80183
This allows the optimizer to turn certain iterator pipelines such as
```rust
let vec = vec![0usize; 100];
vec.into_iter().map(|e| e as isize).collect::<Vec<_>>()
```
into a noop.
The optimization only applies when iterator sources are `T: Copy`
since `impl TrustedRandomAccess for IntoIter<T>`.
No such requirement applies to the output type (`Iterator::Item`).