for `~str`/`~[]`.
Note that `~self` still remains, since I forgot to add support for
`Box<self>` before the snapshot.
How to update your code:
* Instead of `~EXPR`, you should write `box EXPR`.
* Instead of `~TYPE`, you should write `Box<Type>`.
* Instead of `~PATTERN`, you should write `box PATTERN`.
[breaking-change]
Previously, the parser would not allow you to simultaneously implement a
function with a different abi as well as being unsafe at the same time. This
extends the parser to allow functions of the form:
unsafe extern fn foo() {
// ...
}
The closure type grammar was also changed to reflect this reversal, types
previously written as "extern unsafe fn()" must now be written as
"unsafe extern fn()". The parser currently has a hack which allows the old
style, but this will go away once a snapshot has landed.
Closes#10025
[breaking-change]
Currently, rustc requires that a linkage be a product of 100% rlibs or 100%
dylibs. This is to satisfy the requirement that each object appear at most once
in the final output products. This is a bit limiting, and the upcoming libcore
library cannot exist as a dylib, so these rules must change.
The goal of this commit is to enable *some* use cases for mixing rlibs and
dylibs, primarily libcore's use case. It is not targeted at allowing an
exhaustive number of linkage flavors.
There is a new dependency_format module in rustc which calculates what format
each upstream library should be linked as in each output type of the current
unit of compilation. The module itself contains many gory details about what's
going on here.
cc #10729
Currently, rustc requires that a linkage be a product of 100% rlibs or 100%
dylibs. This is to satisfy the requirement that each object appear at most once
in the final output products. This is a bit limiting, and the upcoming libcore
library cannot exist as a dylib, so these rules must change.
The goal of this commit is to enable *some* use cases for mixing rlibs and
dylibs, primarily libcore's use case. It is not targeted at allowing an
exhaustive number of linkage flavors.
There is a new dependency_format module in rustc which calculates what format
each upstream library should be linked as in each output type of the current
unit of compilation. The module itself contains many gory details about what's
going on here.
cc #10729
When a syntax extension is loaded by the compiler, the dylib that is opened may
have other dylibs that it depends on. The dynamic linker must be able to find
these libraries on the system or else the library will fail to load.
Currently, unix gets by with the use of rpaths. This relies on the dylib not
moving around too drastically relative to its dependencies. For windows,
however, this is no rpath available, and in theory unix should work without
rpaths as well.
This modifies the compiler to add all -L search directories to the dynamic
linker's set of load paths. This is currently managed through environment
variables for each platform.
Closes#13848
When a syntax extension is loaded by the compiler, the dylib that is opened may
have other dylibs that it depends on. The dynamic linker must be able to find
these libraries on the system or else the library will fail to load.
Currently, unix gets by with the use of rpaths. This relies on the dylib not
moving around too drastically relative to its dependencies. For windows,
however, this is no rpath available, and in theory unix should work without
rpaths as well.
This modifies the compiler to add all -L search directories to the dynamic
linker's set of load paths. This is currently managed through environment
variables for each platform.
Closes#13848
Similar to my recent changes to ~[T]/&[T], these changes remove the vstore abstraction and represent str types as ~(str) and &(str). The Option<uint> in ty_str is the length of the string, None if the string is dynamically sized.
This allows the use of syntax extensions when cross-compiling (fixing #12102). It does this by encoding the target triple in the crate metadata and checking it when searching for files. Currently the crate triple must match the host triple when there is a macro_registrar_fn, it must match the target triple when linking, and can match either when only macro_rules! macros are used.
due to carelessness, this is pretty much a duplicate of https://github.com/mozilla/rust/pull/13450.
This adds the target triple to the crate metadata.
When searching for a crate the phase (link, syntax) is taken into account.
During link phase only crates matching the target triple are considered.
During syntax phase, either the target or host triple will be accepted, unless
the crate defines a macro_registrar, in which case only the host triple will
match.
This alters the borrow checker's requirements on invoking closures from
requiring an immutable borrow to requiring a unique immutable borrow. This means
that it is illegal to invoke a closure through a `&` pointer because there is no
guarantee that is not aliased. This does not mean that a closure is required to
be in a mutable location, but rather a location which can be proven to be
unique (often through a mutable pointer).
For example, the following code is unsound and is no longer allowed:
type Fn<'a> = ||:'a;
fn call(f: |Fn|) {
f(|| {
f(|| {})
});
}
fn main() {
call(|a| {
a();
});
}
There is no replacement for this pattern. For all closures which are stored in
structures, it was previously allowed to invoke the closure through `&self` but
it now requires invocation through `&mut self`.
The standard library has a good number of violations of this new rule, but the
fixes will be separated into multiple breaking change commits.
Closes#12224
Now with proper checking of enums and allows unsized fields as the last field in a struct or variant. This PR only checks passing of unsized types and distinguishing them from sized ones. To be safe we also need to control storage.
Closes issues #12969 and #13121, supersedes #13375 (all the discussion there is valid here too).
This currently requires linking against a library like libquadmath (or
libgcc), because compiler-rt barely has any support for this and most
hardware does not yet have 128-bit precision floating point. For this
reason, it's currently hidden behind a feature gate.
When compiler-rt is updated to trunk, some tests can be added for
constant evaluation since there will be support for the comparison
operators.
Closes#13381
Refactors all uses of ty_vec and associated things to remove the vstore abstraction (still used for strings, for now). Pointers to vectors are stored as ty_rptr or ty_uniq wrapped around a ty_vec. There are no user-facing changes. Existing behaviour is preserved by special-casing many instances of pointers containing vectors. Hopefully with DST most of these hacks will go away. For now it is useful to leave them hanging around rather than abstracting them into a method or something.
Closes#13554.
Refactores all uses of ty_vec and associated things to remove the vstore abstraction (still used for strings, for now). Pointers to vectors are stored as ty_rptr or ty_uniq wrapped around a ty_vec. There are no user-facing changes. Existing behaviour is preserved by special-casing many instances of pointers containing vectors. Hopefully with DST most of these hacks will go away. For now it is useful to leave them hanging around rather than abstracting them into a method or something.
Closes#13554.
Syntax-only crates are no longer registered with the cstore, so there's no need
to allocate crate numbers to them. This ends up leaving gaps in the crate
numbering scheme which is not expected in the rest of the compiler.
Closes#13560
Syntax-only crates are no longer registered with the cstore, so there's no need
to allocate crate numbers to them. This ends up leaving gaps in the crate
numbering scheme which is not expected in the rest of the compiler.
Closes#13560
This removes the `priv` keyword from the language and removes private enum
variants as a result. The remaining use cases of private enum variants were all
updated to be a struct with one private field that is a private enum.
RFC: 0006-remove-priv
Closes#13535
This bug was introduced in #13384 by accident, and this commit continues the
work of #13384 by finishing support for loading a syntax extension crate without
registering it with the local cstore.
Closes#13495
Cleans up some remnants of the old mutability system and only allows vector/trait mutability in `VstoreSlice` (`&mut [T]`) and `RegionTraitStore` (`&mut Trait`).
libstd: Implement `StrBuf`, a new string buffer type like `Vec`, and port all code over to use it.
Rebased & tests-fixed version of https://github.com/mozilla/rust/pull/13269
When calculating the sysroot, it's more accurate to use realpath() rather than
just one readlink() to account for any intermediate symlinks that the rustc
binary resolves itself to.
For rpath, realpath() is necessary because the rpath must dictate a relative
rpath from the destination back to the originally linked library, which works
more robustly if there are no symlinks involved.
Concretely, any binary generated on OSX into $TMPDIR requires an absolute rpath
because the temporary directory is behind a symlink with one layer of
indirection. This symlink causes all relative rpaths to fail to resolve.
cc #11734
cc #11857
This is an optimization which is quite impactful for compiling small crates.
Reading libstd's metadata takes about 50ms, and a hello world before this change
took about 100ms (this change halves that time).
Recent changes made it such that this optimization wasn't performed, but I think
it's a better idea do to this for now. See #10786 for tracking this issue.
When linking, all crates in the local CStore are used to link the final product.
With #[phase(syntax)], crates want to be omitted from this linkage phase, and
this was achieved by dumping the entire CStore after loading crates. This causes
crates like the standard library to get loaded twice. This loading process is a
fairly expensive operation when dealing with decompressing metadata.
This commit alters the loading process to never register syntax crates in
CStore. Instead, only phase(link) crates ever make their way into the map of
crates. The CrateLoader trait was altered to return everything in one method
instead of having separate methods for finding information.
This separate crate cache is one factor which is causing libstd to be loaded
twice during normal compilation. The crates loaded for syntax extensions have a
separate cache than the crates loaded for linking, so all crates are loaded once
per #[phase] they're tagged with.
This removes the cache and instead uses the CStore structure itself as the cache
for loaded crates. This should allow crates loaded during the syntax phase to be
shared with the crates loaded during the link phase.
Fix#13266.
There is a little bit of acrobatics in the definition of `crate_paths`
to avoid calling `clone()` on the dylib/rlib unless we actually are
going to need them.
The other oddity is that I have replaced the `root_ident: Option<&str>`
parameter with a `root: &Option<CratePaths>`, which may surprise one
who was expecting to see something like: `root: Option<&CratePaths>`.
I went with the approach here because I could not come up with code for
the alternative that was acceptable to the borrow checker.