It turns out there is a bit of a circular dependency - I cannot add
anything to `core` because Clippy fails, and I can't actually add
correct Clippy implementations without new implementations from `core`.
Change some of the Clippy stubs from `unimplemented!` to success values
and leave a FIXME in their place to mitigate this.
Fixes <https://github.com/rust-lang/rust/issues/122587>
refactor check_{lang,library}_ub: use a single intrinsic
This enacts the plan I laid out [here](https://github.com/rust-lang/rust/pull/122282#issuecomment-1996917998): use a single intrinsic, called `ub_checks` (in aniticpation of https://github.com/rust-lang/compiler-team/issues/725), that just exposes the value of `debug_assertions` (consistently implemented in both codegen and the interpreter). Put the language vs library UB logic into the library.
This makes it easier to do something like https://github.com/rust-lang/rust/pull/122282 in the future: that just slightly alters the semantics of `ub_checks` (making it more approximating when crates built with different flags are mixed), but it no longer affects whether these checks can happen in Miri or compile-time.
The first commit just moves things around; I don't think these macros and functions belong into `intrinsics.rs` as they are not intrinsics.
r? `@saethlin`
Rename `hir::Local` into `hir::LetStmt`
Follow-up of #122776.
As discussed on [zulip](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Improve.20naming.20of.20.60ExprKind.3A.3ALet.60.3F).
I made this change into a separate PR because I'm less sure about this change as is. For example, we have `visit_local` and `LocalSource` items. Is it fine to keep these two as is (I supposed it is but I prefer to ask) or not? Having `Node::Local(LetStmt)` makes things more explicit but is it going too far?
r? ```@oli-obk```
Rollup of 8 pull requests
Successful merges:
- #114009 (compiler: allow transmute of ZST arrays with generics)
- #122195 (Note that the caller chooses a type for type param)
- #122651 (Suggest `_` for missing generic arguments in turbofish)
- #122784 (Add `tag_for_variant` query)
- #122839 (Split out `PredicatePolarity` from `ImplPolarity`)
- #122873 (Merge my contributor emails into one using mailmap)
- #122885 (Adjust better spastorino membership to triagebot's adhoc_groups)
- #122888 (add a couple more tests)
r? `@ghost`
`@rustbot` modify labels: rollup
Split out `PredicatePolarity` from `ImplPolarity`
Because having to deal with a third `Reservation` level in all the trait solver code is kind of weird.
r? `@lcnr` or `@oli-obk`
Note that the caller chooses a type for type param
```
error[E0308]: mismatched types
--> $DIR/return-impl-trait.rs:23:5
|
LL | fn other_bounds<T>() -> T
| - -
| | |
| | expected `T` because of return type
| | help: consider using an impl return type: `impl Trait`
| expected this type parameter
...
LL | ()
| ^^ expected type parameter `T`, found `()`
|
= note: expected type parameter `T`
found unit type `()`
= note: the caller chooses the type of T which can be different from ()
```
Tried to see if "expected this type parameter" can be replaced, but that goes all the way to `rustc_infer` so seems not worth the effort and can affect other diagnostics.
Revives #112088 and #104755.
Experimental feature postfix match
This has a basic experimental implementation for the RFC postfix match (rust-lang/rfcs#3295, #121618). [Liaison is](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Postfix.20Match.20Liaison/near/423301844) ```@scottmcm``` with the lang team's [experimental feature gate process](https://github.com/rust-lang/lang-team/blob/master/src/how_to/experiment.md).
This feature has had an RFC for a while, and there has been discussion on it for a while. It would probably be valuable to see it out in the field rather than continue discussing it. This feature also allows to see how popular postfix expressions like this are for the postfix macros RFC, as those will take more time to implement.
It is entirely implemented in the parser, so it should be relatively easy to remove if needed.
This PR is split in to 5 commits to ease review.
1. The implementation of the feature & gating.
2. Add a MatchKind field, fix uses, fix pretty.
3. Basic rustfmt impl, as rustfmt crashes upon seeing this syntax without a fix.
4. Add new MatchSource to HIR for Clippy & other HIR consumers
Several (doc) comments were super outdated or didn't provide enough context.
Some doc comments shoved everything in a single paragraph without respecting
the fact that the first paragraph should be a single sentence because rustdoc
treats these as item descriptions / synopses on module pages.
Split an item bounds and an item's super predicates
This is the moral equivalent of #107614, but instead for predicates this applies to **item bounds**. This PR splits out the item bounds (i.e. *all* predicates that are assumed to hold for the alias) from the item *super predicates*, which are the subset of item bounds which share the same self type as the alias.
## Why?
Much like #107614, there are places in the compiler where we *only* care about super-predicates, and considering predicates that possibly don't have anything to do with the alias is problematic. This includes things like closure signature inference (which is at its core searching for `Self: Fn(..)` style bounds), but also lints like `#[must_use]`, error reporting for aliases, computing type outlives predicates.
Even in cases where considering all of the `item_bounds` doesn't lead to bugs, unnecessarily considering irrelevant bounds does lead to a regression (#121121) due to doing extra work in the solver.
## Example 1 - Trait Aliases
This is best explored via an example:
```
type TAIT<T> = impl TraitAlias<T>;
trait TraitAlias<T> = A + B where T: C;
```
The item bounds list for `Tait<T>` will include:
* `Tait<T>: A`
* `Tait<T>: B`
* `T: C`
While `item_super_predicates` query will include just the first two predicates.
Side-note: You may wonder why `T: C` is included in the item bounds for `TAIT`? This is because when we elaborate `TraitAlias<T>`, we will also elaborate all the predicates on the trait.
## Example 2 - Associated Type Bounds
```
type TAIT<T> = impl Iterator<Item: A>;
```
The `item_bounds` list for `TAIT<T>` will include:
* `Tait<T>: Iterator`
* `<Tait<T> as Iterator>::Item: A`
But the `item_super_predicates` will just include the first bound, since that's the only bound that is relevant to the *alias* itself.
## So what
This leads to some diagnostics duplication just like #107614, but none of it will be user-facing. We only see it in the UI test suite because we explicitly disable diagnostic deduplication.
Regarding naming, I went with `super_predicates` kind of arbitrarily; this can easily be changed, but I'd consider better names as long as we don't block this PR in perpetuity.
Use hir::Node helper methods instead of repeating the same impl multiple times
I wanted to do something entirely different and stumbled upon a bunch of cleanups
hir: Remove `opt_local_def_id_to_hir_id` and `opt_hir_node_by_def_id`
Also replace a few `hir_node()` calls with `hir_node_by_def_id()`.
Follow up to https://github.com/rust-lang/rust/pull/120943.
Distinguish between library and lang UB in assert_unsafe_precondition
As described in https://github.com/rust-lang/rust/pull/121583#issuecomment-1963168186, `assert_unsafe_precondition` now explicitly distinguishes between language UB (conditions we explicitly optimize on) and library UB (things we document you shouldn't do, and maybe some library internals assume you don't do).
`debug_assert_nounwind` was originally added to avoid the "only at runtime" aspect of `assert_unsafe_precondition`. Since then the difference between the macros has gotten muddied. This totally revamps the situation.
Now _all_ preconditions shall be checked with `assert_unsafe_precondition`. If you have a precondition that's only checkable at runtime, do a `const_eval_select` hack, as done in this PR.
r? RalfJung
Lint singleton gaps after exclusive ranges
In the discussion to stabilize exclusive range patterns (https://github.com/rust-lang/rust/issues/37854), it has often come up that they're likely to cause off-by-one mistakes. We already have the `overlapping_range_endpoints` lint, so I [proposed](https://github.com/rust-lang/rust/issues/37854#issuecomment-1845580712) a lint to catch the complementary mistake.
This PR adds a new `non_contiguous_range_endpoints` lint that catches likely off-by-one errors with exclusive range patterns. Here's the idea (see the test file for more examples):
```rust
match x {
0..10 => ..., // WARN: this range doesn't match `10_u8` because `..` is an exclusive range
11..20 => ..., // this could appear to continue range `0_u8..10_u8`, but `10_u8` isn't matched by either of them
_ => ...,
}
// help: use an inclusive range instead: `0_u8..=10_u8`
```
More precisely: for any exclusive range `lo..hi`, if `hi+1` is matched by another range but `hi` isn't, we suggest writing an inclusive range `lo..=hi` instead. We also catch `lo..T::MAX`.