Use type based qualification for unions
Union field access is currently qualified based on the qualification of
a value previously assigned to the union. At the same time, every union
access transmutes the content of the union, which might result in a
different qualification.
For example, consider constants A and B as defined below, under the
current rules neither contains interior mutability, since a value used
in the initial assignment did not contain `UnsafeCell` constructor.
```rust
#![feature(untagged_unions)]
union U { i: u32, c: std::cell::Cell<u32> }
const A: U = U { i: 0 };
const B: std::cell::Cell<u32> = unsafe { U { i: 0 }.c };
```
To avoid the issue, the changes here propose to consider the content of
a union as opaque and use type based qualification for union types.
Fixes#90268.
`@rust-lang/wg-const-eval`
Consider indirect mutation during const qualification dataflow
Previously a local would be qualified if either one of two separate data
flow computations indicated so. First determined if a local could
contain the qualif, but ignored any forms of indirect mutation. Second
determined if a local could be mutably borrowed (and so indirectly
mutated), but which in turn ignored the qualif.
The end result was incorrect because the effect of indirect mutation was
effectivelly ignored in the all but the final stage of computation.
In the new implementation the indirect mutation is directly incorporated
into the qualif data flow. The local variable becomes immediately
qualified once it is mutably borrowed and borrowed place type can
contain the qualif.
In general we will now reject additional programs, program that were
prevously unintentionally accepted.
There are also some cases which are now accepted but were previously
rejected, because previous implementation didn't consider whether
borrowed place could have the qualif under the consideration.
Fixes#90124.
r? `@ecstatic-morse`
Revert "Add rustc lint, warning when iterating over hashmaps"
Fixes perf regressions introduced in https://github.com/rust-lang/rust/pull/90235 by temporarily reverting the relevant PR.
Resolves 5033
Trailing comments at the end of the root Module were removed because the
module span did not extend until the end of the file.
The root Module's span now encompasses the entire file, which ensures
that no comments are lost when using ``#![rustfmt::skip]``
Improve perf measurements of `build_extern_trait_impl`
Before, it was only measuring one callsite of `build_impl`, and it
incremented the call count even if `build_impl` returned early because
the `did` was already inlined.
Now, it measures all calls, minus calls that return early.
The rustc fork of rayon integrates with Cargo's jobserver to limit the
amount of parallelism. However, rustdoc's use case is concurrent I/O,
which is not CPU-heavy, so it should be able to use mainline rayon.
See this discussion [1] for more details.
[1]: https://github.com/rust-lang/rust/issues/90227#issuecomment-952468618
Note: I chose rayon 1.3.1 so that the rayon version used elsewhere in
the workspace does not change.
Various cleanups around opaque types
Best reviewed commit by commit.
This PR has no functional changes.
Mostly it's moving logic from an extension trait in rustc_trait_selection to inherent impls on rustc_infer.
Remove extra lines in examples for `Duration::try_from_secs_*`
None of the other examples have extra lines below the `#![feature(...)]` statements, so I thought it appropriate that these examples shouldn't either.
Add BorrowSet to public api
This PR adds `BorrowSet` to the public api so that verification tools can obtain the activation and reservation points of two phase borrows without having to redo calculations themselves (and thus potentially differently from rustc).
Turns out we already can obtain `MoveData` thanks to the public `HasMoveData` trait, so constructing a `BorrowSet` should not provide much of an issue. However, I can't speak to the soundness of this approach, is it safe to take an under-approximation of `MoveData`?
r? `@nikomatsakis`
Fixes incorrect handling of ADT's drop requirements
Fixes#90024 and a bunch of duplicates.
The main issue was just that the contract of `NeedsDropTypes::adt_components` was inconsistent; the list of types it might return were the generic parameters themselves or the fields of the ADT, depending on the nature of the drop impl. This meant that the caller could not determine whether a `.subst()` call was still needed on those types; it called `.subst()` in all cases, and this led to ICEs when the returned types were the generic params.
First contribution of more than a few lines, so feedback definitely appreciated.
This manifistated in #90195 with compiler being unable to keep
one candidate for a trait impl, if where is a global impl and more
than one trait bound in the where clause.
Before #87280 `candidate_should_be_dropped_in_favor_of` was using
`TypeFoldable::is_global()` that was enough to discard the two
`ParamCandidate`s. But #87280 changed it to use
`TypeFoldable::is_known_global()` instead, which is pessimistic, so
now the compiler drops the global impl instead (because
`is_known_global` is not sure) and then can't decide between the
two `ParamCandidate`s.
Switching it to use `is_global` again solves the issue.
Fixes#90195.