Rollup of 4 pull requests
Successful merges:
- #125635 (Rename HIR `TypeBinding` to `AssocItemConstraint` and related cleanup)
- #125774 (Avoid unwrap diag.code directly in note_and_explain_type_err)
- #125786 (Fold item bounds before proving them in `check_type_bounds` in new solver)
- #125790 (Don't recompute `tail` in `lower_stmts`)
r? `@ghost`
`@rustbot` modify labels: rollup
Fold item bounds before proving them in `check_type_bounds` in new solver
Vaguely confident that this is sufficient to prevent rust-lang/trait-system-refactor-initiative#46 and rust-lang/trait-system-refactor-initiative#62.
This is not the "correct" solution, but will probably suffice until coinduction, at which point we implement the right solution (`check_type_bounds` must prove `Assoc<...> alias-eq ConcreteType`, normalizing requires proving item bounds).
r? lcnr
Avoid unwrap diag.code directly in note_and_explain_type_err
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
Fixes#125757
Rename HIR `TypeBinding` to `AssocItemConstraint` and related cleanup
Rename `hir::TypeBinding` and `ast::AssocConstraint` to `AssocItemConstraint` and update all items and locals using the old terminology.
Motivation: The terminology *type binding* is extremely outdated. "Type bindings" not only include constraints on associated *types* but also on associated *constants* (feature `associated_const_equality`) and on RPITITs of associated *functions* (feature `return_type_notation`). Hence the word *item* in the new name. Furthermore, the word *binding* commonly refers to a mapping from a binder/identifier to a "value" for some definition of "value". Its use in "type binding" made sense when equality constraints (e.g., `AssocTy = Ty`) were the only kind of associated item constraint. Nowadays however, we also have *associated type bounds* (e.g., `AssocTy: Bound`) for which the term *binding* doesn't make sense.
---
Old terminology (HIR, rustdoc):
```
`TypeBinding`: (associated) type binding
├── `Constraint`: associated type bound
└── `Equality`: (associated) equality constraint (?)
├── `Ty`: (associated) type binding
└── `Const`: associated const equality (constraint)
```
Old terminology (AST, abbrev.):
```
`AssocConstraint`
├── `Bound`
└── `Equality`
├── `Ty`
└── `Const`
```
New terminology (AST, HIR, rustdoc):
```
`AssocItemConstraint`: associated item constraint
├── `Bound`: associated type bound
└── `Equality`: associated item equality constraint OR associated item binding (for short)
├── `Ty`: associated type equality constraint OR associated type binding (for short)
└── `Const`: associated const equality constraint OR associated const binding (for short)
```
r? compiler-errors
Revert "Auto merge of #115105 - cjgillot:dest-prop-default, r=oli-obk"
This reverts commit cfb730450f, reversing changes made to 91c0823ee6.
To address https://github.com/rust-lang/rust/pull/115105#issuecomment-2141019310
r? `@oli-obk`
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
compiletest: clarify COMPILETEST_NEEDS_ALL_LLVM_COMPONENTS error
COMPILETEST_NEEDS_ALL_LLVM_COMPONENTS is a confusing name because elsewhere "needs" means "ignore when requirement not met", but here it means "fail when requirement not met".
remove tracing tree indent lines
This allows vscode to collapse nested spans without having to manually remove the indent lines. This is incredibly useful when logging the new solver. I don't mind making them optional depending on some environment flag if you prefer using indent lines
For a gist of the new output, see https://gist.github.com/lcnr/bb4360ddbc5cd4631f2fbc569057e5eb#file-example-output-L181
r? `@oli-obk`
Enable DestinationPropagation by default.
~~Based on https://github.com/rust-lang/rust/pull/115291.~~
This PR proposes to enable the destination propagation pass by default.
This pass is meant to reduce the amount of copies present in MIR.
At the same time, this PR removes the `RenameReturnPlace` pass, as it is currently unsound.
`DestinationPropagation` is not limited to `_0`, but does not handle borrowed locals.
Make `std::env::{set_var, remove_var}` unsafe in edition 2024
Allow calling these functions without `unsafe` blocks in editions up until 2021, but don't trigger the `unused_unsafe` lint for `unsafe` blocks containing these functions.
Fixes#27970.
Fixes#90308.
CC #124866.
Rollup of 7 pull requests
Successful merges:
- #125342 (Document platform-specifics for `Read` and `Write` of `File`)
- #125711 (Make `body_owned_by` return the `Body` instead of just the `BodyId`)
- #125739 (drop_in_place: weaken the claim of equivalence with drop(ptr.read()))
- #125745 (Bump the stage0 compiler to beta.7 (2024-05-26))
- #125746 (Fix copy-paste error in `Duration::from_weeks` panic message.)
- #125753 (compiletest: Unify `cmd2procres` with `run_command_to_procres`)
- #125754 (coverage: Rename MC/DC `conditions_num` to `num_conditions`)
r? `@ghost`
`@rustbot` modify labels: rollup
coverage: Rename MC/DC `conditions_num` to `num_conditions`
Updated version of #124571, without the other changes that were split out into #125108 and #125700.
This value represents a quantity of conditions, not an ID, so the new spelling is more appropriate.
Some of the code touched by this PR could perhaps use some other changes, but I would prefer to keep this PR as a simple renaming and avoid scope creep.
`@rustbot` label +A-code-coverage
compiletest: Unify `cmd2procres` with `run_command_to_procres`
Historical context: I originally added `run_command_to_procres` in #112300 and #114843, because I didn't like the overly-specific failure message in `cmd2procres`, but at the time I didn't feel confident enough to change the existing code, so I just added my own similar code.
Now I'm going back to remove this redundancy by eliminating `cmd2procress`, and adjusting all callers to use a slightly-tweaked `run_command_to_procres` instead.
drop_in_place: weaken the claim of equivalence with drop(ptr.read())
The two are *not* semantically equivalent in all cases, so let's not be so definite about this.
Fixes https://github.com/rust-lang/rust/issues/112015
Make `body_owned_by` return the `Body` instead of just the `BodyId`
fixes#125677
Almost all `body_owned_by` callers immediately called `body`, too, so just return `Body` directly.
This makes the inline-const query feeding more robust, as all calls to `body_owned_by` will now yield a body for inline consts, too.
I have not yet figured out a good way to make `tcx.hir().body()` return an inline-const body, but that can be done as a follow-up
Make `body_owned_by` return the `Body` instead of just the `BodyId`
fixes#125677
Almost all `body_owned_by` callers immediately called `body`, too, so just return `Body` directly.
This makes the inline-const query feeding more robust, as all calls to `body_owned_by` will now yield a body for inline consts, too.
I have not yet figured out a good way to make `tcx.hir().body()` return an inline-const body, but that can be done as a follow-up
Do not equate `Const`'s ty in `super_combine_const`
Fixes#114456
In #125451 we started relating the `Const`'s tys outside of a probe so it was no longer simply an assertion to catch bugs.
This was done so that when we _do_ provide a wrongly typed const argument to an item if we wind up relating it with some other instantiation we'll have a `TypeError` we can bubble up and taint the resulting mir allowing const eval to skip evaluation.
In this PR I instead change `ConstArgHasType` to correctly handle checking the types of const inference variables. Previously if we had something like `impl<const N: u32> Trait for [(); N]`, when using the impl we would instantiate it with infer vars and then check that `?x: u32` is of type `u32` and succeed. Then later we would infer `?x` to some `Const` of type `usize`.
We now stall on `?x` in `ConstArgHasType` until it has a concrete value that we can determine the type of. This allows us to fail using the erroneous implementation of `Trait` which allows us to taint the mir.
Long term we intend to remove the `ty` field on `Const` so we would have no way of accessing the `ty` of a const inference variable anyway and would have to do this. I did not fully update `ConstArgHasType` to avoid using the `ty` field as it's not entirely possible right now- we would need to lookup `ConstArgHasType` candidates in the env.
---
As for _why_ I think we should do this, relating the types of const's is not necessary for soundness of the type system. Originally this check started off as a plain `==` in `super_relate_consts` and gradually has been growing in complexity as we support more complicated types. It was never actually required to ensure that const arguments are correctly typed for their parameters however.
The way we currently check that a const argument has the correct type is a little convoluted and confusing (and will hopefully be less weird as time goes on). Every const argument has an anon const with its return type set to type of the const parameter it is an argument to. When type checking the anon const regular type checking rules require that the expression is the same type as the return type. This effectively ensure that no matter what every const argument _always_ has the correct type.
An extra bit of complexity is that during `hir_ty_lowering` we do not represent everything as a `ConstKind::Unevaluated` corresponding to the anon const. For generic parameters i.e. `[(); N]` we simply represent them as `ConstKind::Param` as we do not want `ConstKind::Unevaluated` with generic substs on stable under min const generics. The anon const still gets type checked resulting in errors about type mismatches.
Eventually we intend to not create anon consts for all const arguments (for example for `ConstKind::Param`) and instead check that the argument type is correct via `ConstArgHasType` obligations (these effectively also act as a check that the anon consts have the correctly set return type).
What this all means is that the the only time we should ever have mismatched types when relating two `Const`s is if we have messed up our logic for ensuring that const arguments are of the correct type. Having this not be an assert is:
- Confusing as it may incorrectly lead people to believe this is an important check that is actually required
- Opens the possibility for bugs or behaviour reliant on this (unnecessary) check existing
---
This PR makes two tests go from pass->ICE (`generic_const_exprs/ice-125520-layout-mismatch-mulwithoverflow.rs` and `tests/crashes/121858.rs`). This is caused by the fact that we evaluate anon consts even if their where clauses do not hold and is a pre-existing issue and only affects `generic_const_exprs`. I am comfortable exposing the brokenness of `generic_const_exprs` more with this PR
This PR makes a test go from ICE->pass (`const-generics/issues/issue-105821.rs`). I have no idea why this PR affects that but I believe that ICE is an unrelated issue to do with the fact that under `generic_const_exprs`/`adt_const_params` we do not handle lifetimes in const parameter types correctly. This PR is likely just masking this bug.
Note: this PR doesn't re-introduce the assertion that the two consts' tys are equal. I'm not really sure how I feel about this but tbh it has caused more ICEs than its found lately so 🤷♀️
r? `@oli-obk` `@compiler-errors`
Add lang items for `AsyncFn*`, `Future`, `AsyncFnKindHelper`'s associated types
Adds lang items for `AsyncFnOnce::Output`, `AsyncFnOnce::CallOnceFuture`, `AsyncFnMut::CallRefFuture`, and uses them in the new solver. I'm mostly interested in doing this to help accelerate uplifting the new trait solver into a separate crate.
The old solver is kind of spaghetti, so I haven't moved that to use these lang items (i.e. it still uses `item_name`-based comparisons).
update: Also adds lang items for `Future::Output` and `AsyncFnKindHelper::Upvars`.
cc ``@lcnr``
[ACP 362] genericize `ptr::from_raw_parts`
This implements https://github.com/rust-lang/libs-team/issues/362
As such, it can partially undo https://github.com/rust-lang/rust/pull/124795 , letting `slice_from_raw_parts` just call `from_raw_parts` again without re-introducing the unnecessary cast to MIR.
By doing this it also removes a spurious cast from `str::from_raw_parts`. And I think it does a good job of showing the value of the ACP, since the only thing that needed new turbofishing because of this is inside `ptr::null(_mut)`, but only because `ptr::without_provenance(_mut)` doesn't support pointers to extern types, which it absolutely could (without even changing the implementation).