The Float trait in libstd is quite a large trait which has dependencies on cmath
(libm) and such, which libcore cannot satisfy. It also has many functions that
libcore can implement, however, as LLVM has intrinsics or they're just bit
twiddling.
This commit moves what it can of the Float trait from the standard library into
libcore to allow floats to be usable in the core library. The remaining
functions are now resident in a FloatMath trait in the standard library (in the
prelude now). Previous code which was generic over just the Float trait may now
need to be generic over the FloatMath trait.
[breaking-change]
This mostly involved frobbing imports between realstd, realcore, and the core
being test. Some of the imports are a little counterintuitive, but it mainly
focuses around libcore's types not implementing Show while libstd's types
implement Show.
This implements all traits inside of core::num for all the primitive types,
removing all the functionality from libstd. The std modules reexport all of the
necessary items from the core modules.
fail!() used to require owned strings but can handle static strings
now. Also, it can pass its arguments to fmt!() on its own, no need for
the caller to call fmt!() itself.
Both expm1 and ln1p have been renamed to exp_m1 and ln_1p in order to be consistent with the underscore usage elsewhere.
The exp_m1 method is used for increased accuracy when doing floating point calculations, so this has been moved from the more general 'Exponential' trait into 'Float'.
After discussions on IRC and #4819, we have decided to revert this change. This is due to the traits expressing different ideas and because hyperbolic functions are not trivially implementable from exponential functions for floating-point types.
The Hyperbolic Functions are trivially implemented in terms of `exp`, so it's simpler to group them the Exponential trait. In the future these would have default implementations.
This is a temporary trait until we have default methods. We don't want to encumber all implementors of Ord by requiring them to implement these functions, but at the same time we want to be able to take advantage of the speed of the specific numeric functions (like the `fmin` and `fmax` intrinsics).
Achieves at least 5x speed up for some functions!
Also, reorganise the delegation code so that the delegated function wrappers
have the #[inline(always)] annotation, and reduce the repetition of
delegate!(..).