rust/src/libcore/num/f32.rs
2013-04-23 14:05:41 -04:00

607 lines
16 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Operations and constants for `f32`
use num::strconv;
use num;
use option::Option;
use from_str;
use to_str;
#[cfg(notest)] use cmp::{Eq, Ord};
#[cfg(stage0,notest)]
use ops::{Add, Sub, Mul, Div, Modulo, Neg};
#[cfg(stage1,notest)]
#[cfg(stage2,notest)]
#[cfg(stage3,notest)]
use ops::{Add, Sub, Mul, Quot, Rem, Neg};
pub use cmath::c_float_targ_consts::*;
// An inner module is required to get the #[inline(always)] attribute on the
// functions.
pub use self::delegated::*;
macro_rules! delegate(
(
$(
fn $name:ident(
$(
$arg:ident : $arg_ty:ty
),*
) -> $rv:ty = $bound_name:path
),*
) => (
mod delegated {
use cmath::c_float_utils;
use libc::{c_float, c_int};
use unstable::intrinsics;
$(
#[inline(always)]
pub fn $name($( $arg : $arg_ty ),*) -> $rv {
unsafe {
$bound_name($( $arg ),*)
}
}
)*
}
)
)
delegate!(
// intrinsics
fn abs(n: f32) -> f32 = intrinsics::fabsf32,
fn cos(n: f32) -> f32 = intrinsics::cosf32,
fn exp(n: f32) -> f32 = intrinsics::expf32,
fn exp2(n: f32) -> f32 = intrinsics::exp2f32,
fn floor(x: f32) -> f32 = intrinsics::floorf32,
fn ln(n: f32) -> f32 = intrinsics::logf32,
fn log10(n: f32) -> f32 = intrinsics::log10f32,
fn log2(n: f32) -> f32 = intrinsics::log2f32,
fn mul_add(a: f32, b: f32, c: f32) -> f32 = intrinsics::fmaf32,
fn pow(n: f32, e: f32) -> f32 = intrinsics::powf32,
fn powi(n: f32, e: c_int) -> f32 = intrinsics::powif32,
fn sin(n: f32) -> f32 = intrinsics::sinf32,
fn sqrt(n: f32) -> f32 = intrinsics::sqrtf32,
// LLVM 3.3 required to use intrinsics for these four
fn ceil(n: c_float) -> c_float = c_float_utils::ceil,
fn trunc(n: c_float) -> c_float = c_float_utils::trunc,
/*
fn ceil(n: f32) -> f32 = intrinsics::ceilf32,
fn trunc(n: f32) -> f32 = intrinsics::truncf32,
fn rint(n: f32) -> f32 = intrinsics::rintf32,
fn nearbyint(n: f32) -> f32 = intrinsics::nearbyintf32,
*/
// cmath
fn acos(n: c_float) -> c_float = c_float_utils::acos,
fn asin(n: c_float) -> c_float = c_float_utils::asin,
fn atan(n: c_float) -> c_float = c_float_utils::atan,
fn atan2(a: c_float, b: c_float) -> c_float = c_float_utils::atan2,
fn cbrt(n: c_float) -> c_float = c_float_utils::cbrt,
fn copysign(x: c_float, y: c_float) -> c_float = c_float_utils::copysign,
fn cosh(n: c_float) -> c_float = c_float_utils::cosh,
fn erf(n: c_float) -> c_float = c_float_utils::erf,
fn erfc(n: c_float) -> c_float = c_float_utils::erfc,
fn expm1(n: c_float) -> c_float = c_float_utils::expm1,
fn abs_sub(a: c_float, b: c_float) -> c_float = c_float_utils::abs_sub,
fn fmax(a: c_float, b: c_float) -> c_float = c_float_utils::fmax,
fn fmin(a: c_float, b: c_float) -> c_float = c_float_utils::fmin,
fn nextafter(x: c_float, y: c_float) -> c_float = c_float_utils::nextafter,
fn frexp(n: c_float, value: &mut c_int) -> c_float = c_float_utils::frexp,
fn hypot(x: c_float, y: c_float) -> c_float = c_float_utils::hypot,
fn ldexp(x: c_float, n: c_int) -> c_float = c_float_utils::ldexp,
fn lgamma(n: c_float, sign: &mut c_int) -> c_float = c_float_utils::lgamma,
fn log_radix(n: c_float) -> c_float = c_float_utils::log_radix,
fn ln1p(n: c_float) -> c_float = c_float_utils::ln1p,
fn ilog_radix(n: c_float) -> c_int = c_float_utils::ilog_radix,
fn modf(n: c_float, iptr: &mut c_float) -> c_float = c_float_utils::modf,
fn round(n: c_float) -> c_float = c_float_utils::round,
fn ldexp_radix(n: c_float, i: c_int) -> c_float = c_float_utils::ldexp_radix,
fn sinh(n: c_float) -> c_float = c_float_utils::sinh,
fn tan(n: c_float) -> c_float = c_float_utils::tan,
fn tanh(n: c_float) -> c_float = c_float_utils::tanh,
fn tgamma(n: c_float) -> c_float = c_float_utils::tgamma)
// These are not defined inside consts:: for consistency with
// the integer types
pub static NaN: f32 = 0.0_f32/0.0_f32;
pub static infinity: f32 = 1.0_f32/0.0_f32;
pub static neg_infinity: f32 = -1.0_f32/0.0_f32;
#[inline(always)]
pub fn is_NaN(f: f32) -> bool { f != f }
#[inline(always)]
pub fn add(x: f32, y: f32) -> f32 { return x + y; }
#[inline(always)]
pub fn sub(x: f32, y: f32) -> f32 { return x - y; }
#[inline(always)]
pub fn mul(x: f32, y: f32) -> f32 { return x * y; }
#[inline(always)]
pub fn quot(x: f32, y: f32) -> f32 { return x / y; }
#[inline(always)]
pub fn rem(x: f32, y: f32) -> f32 { return x % y; }
#[inline(always)]
pub fn lt(x: f32, y: f32) -> bool { return x < y; }
#[inline(always)]
pub fn le(x: f32, y: f32) -> bool { return x <= y; }
#[inline(always)]
pub fn eq(x: f32, y: f32) -> bool { return x == y; }
#[inline(always)]
pub fn ne(x: f32, y: f32) -> bool { return x != y; }
#[inline(always)]
pub fn ge(x: f32, y: f32) -> bool { return x >= y; }
#[inline(always)]
pub fn gt(x: f32, y: f32) -> bool { return x > y; }
// FIXME (#1999): replace the predicates below with llvm intrinsics or
// calls to the libmath macros in the rust runtime for performance.
/// Returns true if `x` is a positive number, including +0.0f320 and +Infinity
#[inline(always)]
pub fn is_positive(x: f32) -> bool {
x > 0.0f32 || (1.0f32/x) == infinity
}
/// Returns true if `x` is a negative number, including -0.0f320 and -Infinity
#[inline(always)]
pub fn is_negative(x: f32) -> bool {
x < 0.0f32 || (1.0f32/x) == neg_infinity
}
/**
* Returns true if `x` is a negative number, including -0.0f320 and -Infinity
*
* This is the same as `f32::is_negative`.
*/
#[inline(always)]
pub fn is_nonpositive(x: f32) -> bool {
return x < 0.0f32 || (1.0f32/x) == neg_infinity;
}
/**
* Returns true if `x` is a positive number, including +0.0f320 and +Infinity
*
* This is the same as `f32::is_positive`.)
*/
#[inline(always)]
pub fn is_nonnegative(x: f32) -> bool {
return x > 0.0f32 || (1.0f32/x) == infinity;
}
/// Returns true if `x` is a zero number (positive or negative zero)
#[inline(always)]
pub fn is_zero(x: f32) -> bool {
return x == 0.0f32 || x == -0.0f32;
}
/// Returns true if `x`is an infinite number
#[inline(always)]
pub fn is_infinite(x: f32) -> bool {
return x == infinity || x == neg_infinity;
}
/// Returns true if `x`is a finite number
#[inline(always)]
pub fn is_finite(x: f32) -> bool {
return !(is_NaN(x) || is_infinite(x));
}
// FIXME (#1999): add is_normal, is_subnormal, and fpclassify.
/* Module: consts */
pub mod consts {
// FIXME (requires Issue #1433 to fix): replace with mathematical
// staticants from cmath.
/// Archimedes' staticant
pub static pi: f32 = 3.14159265358979323846264338327950288_f32;
/// pi/2.0
pub static frac_pi_2: f32 = 1.57079632679489661923132169163975144_f32;
/// pi/4.0
pub static frac_pi_4: f32 = 0.785398163397448309615660845819875721_f32;
/// 1.0/pi
pub static frac_1_pi: f32 = 0.318309886183790671537767526745028724_f32;
/// 2.0/pi
pub static frac_2_pi: f32 = 0.636619772367581343075535053490057448_f32;
/// 2.0/sqrt(pi)
pub static frac_2_sqrtpi: f32 = 1.12837916709551257389615890312154517_f32;
/// sqrt(2.0)
pub static sqrt2: f32 = 1.41421356237309504880168872420969808_f32;
/// 1.0/sqrt(2.0)
pub static frac_1_sqrt2: f32 = 0.707106781186547524400844362104849039_f32;
/// Euler's number
pub static e: f32 = 2.71828182845904523536028747135266250_f32;
/// log2(e)
pub static log2_e: f32 = 1.44269504088896340735992468100189214_f32;
/// log10(e)
pub static log10_e: f32 = 0.434294481903251827651128918916605082_f32;
/// ln(2.0)
pub static ln_2: f32 = 0.693147180559945309417232121458176568_f32;
/// ln(10.0)
pub static ln_10: f32 = 2.30258509299404568401799145468436421_f32;
}
#[inline(always)]
pub fn signbit(x: f32) -> int {
if is_negative(x) { return 1; } else { return 0; }
}
#[inline(always)]
pub fn logarithm(n: f32, b: f32) -> f32 {
return log2(n) / log2(b);
}
#[cfg(notest)]
impl Eq for f32 {
#[inline(always)]
fn eq(&self, other: &f32) -> bool { (*self) == (*other) }
#[inline(always)]
fn ne(&self, other: &f32) -> bool { (*self) != (*other) }
}
#[cfg(notest)]
impl Ord for f32 {
#[inline(always)]
fn lt(&self, other: &f32) -> bool { (*self) < (*other) }
#[inline(always)]
fn le(&self, other: &f32) -> bool { (*self) <= (*other) }
#[inline(always)]
fn ge(&self, other: &f32) -> bool { (*self) >= (*other) }
#[inline(always)]
fn gt(&self, other: &f32) -> bool { (*self) > (*other) }
}
impl num::Zero for f32 {
#[inline(always)]
fn zero() -> f32 { 0.0 }
}
impl num::One for f32 {
#[inline(always)]
fn one() -> f32 { 1.0 }
}
#[cfg(notest)]
impl Add<f32,f32> for f32 {
#[inline(always)]
fn add(&self, other: &f32) -> f32 { *self + *other }
}
#[cfg(notest)]
impl Sub<f32,f32> for f32 {
#[inline(always)]
fn sub(&self, other: &f32) -> f32 { *self - *other }
}
#[cfg(notest)]
impl Mul<f32,f32> for f32 {
#[inline(always)]
fn mul(&self, other: &f32) -> f32 { *self * *other }
}
#[cfg(stage0,notest)]
impl Div<f32,f32> for f32 {
#[inline(always)]
fn div(&self, other: &f32) -> f32 { *self / *other }
}
#[cfg(stage1,notest)]
#[cfg(stage2,notest)]
#[cfg(stage3,notest)]
impl Quot<f32,f32> for f32 {
#[inline(always)]
fn quot(&self, other: &f32) -> f32 { *self / *other }
}
#[cfg(stage0,notest)]
impl Modulo<f32,f32> for f32 {
#[inline(always)]
fn modulo(&self, other: &f32) -> f32 { *self % *other }
}
#[cfg(stage1,notest)]
#[cfg(stage2,notest)]
#[cfg(stage3,notest)]
impl Rem<f32,f32> for f32 {
#[inline(always)]
fn rem(&self, other: &f32) -> f32 { *self % *other }
}
#[cfg(notest)]
impl Neg<f32> for f32 {
#[inline(always)]
fn neg(&self) -> f32 { -*self }
}
impl num::Round for f32 {
#[inline(always)]
fn round(&self, mode: num::RoundMode) -> f32 {
match mode {
num::RoundDown => floor(*self),
num::RoundUp => ceil(*self),
num::RoundToZero if is_negative(*self) => ceil(*self),
num::RoundToZero => floor(*self),
num::RoundFromZero if is_negative(*self) => floor(*self),
num::RoundFromZero => ceil(*self)
}
}
#[inline(always)]
fn floor(&self) -> f32 { floor(*self) }
#[inline(always)]
fn ceil(&self) -> f32 { ceil(*self) }
#[inline(always)]
fn fract(&self) -> f32 {
if is_negative(*self) {
(*self) - ceil(*self)
} else {
(*self) - floor(*self)
}
}
}
/**
* Section: String Conversions
*/
/**
* Converts a float to a string
*
* # Arguments
*
* * num - The float value
*/
#[inline(always)]
pub fn to_str(num: f32) -> ~str {
let (r, _) = strconv::to_str_common(
&num, 10u, true, strconv::SignNeg, strconv::DigAll);
r
}
/**
* Converts a float to a string in hexadecimal format
*
* # Arguments
*
* * num - The float value
*/
#[inline(always)]
pub fn to_str_hex(num: f32) -> ~str {
let (r, _) = strconv::to_str_common(
&num, 16u, true, strconv::SignNeg, strconv::DigAll);
r
}
/**
* Converts a float to a string in a given radix
*
* # Arguments
*
* * num - The float value
* * radix - The base to use
*
* # Failure
*
* Fails if called on a special value like `inf`, `-inf` or `NaN` due to
* possible misinterpretation of the result at higher bases. If those values
* are expected, use `to_str_radix_special()` instead.
*/
#[inline(always)]
pub fn to_str_radix(num: f32, rdx: uint) -> ~str {
let (r, special) = strconv::to_str_common(
&num, rdx, true, strconv::SignNeg, strconv::DigAll);
if special { fail!(~"number has a special value, \
try to_str_radix_special() if those are expected") }
r
}
/**
* Converts a float to a string in a given radix, and a flag indicating
* whether it's a special value
*
* # Arguments
*
* * num - The float value
* * radix - The base to use
*/
#[inline(always)]
pub fn to_str_radix_special(num: f32, rdx: uint) -> (~str, bool) {
strconv::to_str_common(&num, rdx, true,
strconv::SignNeg, strconv::DigAll)
}
/**
* Converts a float to a string with exactly the number of
* provided significant digits
*
* # Arguments
*
* * num - The float value
* * digits - The number of significant digits
*/
#[inline(always)]
pub fn to_str_exact(num: f32, dig: uint) -> ~str {
let (r, _) = strconv::to_str_common(
&num, 10u, true, strconv::SignNeg, strconv::DigExact(dig));
r
}
/**
* Converts a float to a string with a maximum number of
* significant digits
*
* # Arguments
*
* * num - The float value
* * digits - The number of significant digits
*/
#[inline(always)]
pub fn to_str_digits(num: f32, dig: uint) -> ~str {
let (r, _) = strconv::to_str_common(
&num, 10u, true, strconv::SignNeg, strconv::DigMax(dig));
r
}
impl to_str::ToStr for f32 {
#[inline(always)]
fn to_str(&self) -> ~str { to_str_digits(*self, 8) }
}
impl num::ToStrRadix for f32 {
#[inline(always)]
fn to_str_radix(&self, rdx: uint) -> ~str {
to_str_radix(*self, rdx)
}
}
/**
* Convert a string in base 10 to a float.
* Accepts a optional decimal exponent.
*
* This function accepts strings such as
*
* * '3.14'
* * '+3.14', equivalent to '3.14'
* * '-3.14'
* * '2.5E10', or equivalently, '2.5e10'
* * '2.5E-10'
* * '.' (understood as 0)
* * '5.'
* * '.5', or, equivalently, '0.5'
* * '+inf', 'inf', '-inf', 'NaN'
*
* Leading and trailing whitespace represent an error.
*
* # Arguments
*
* * num - A string
*
* # Return value
*
* `none` if the string did not represent a valid number. Otherwise,
* `Some(n)` where `n` is the floating-point number represented by `num`.
*/
#[inline(always)]
pub fn from_str(num: &str) -> Option<f32> {
strconv::from_str_common(num, 10u, true, true, true,
strconv::ExpDec, false, false)
}
/**
* Convert a string in base 16 to a float.
* Accepts a optional binary exponent.
*
* This function accepts strings such as
*
* * 'a4.fe'
* * '+a4.fe', equivalent to 'a4.fe'
* * '-a4.fe'
* * '2b.aP128', or equivalently, '2b.ap128'
* * '2b.aP-128'
* * '.' (understood as 0)
* * 'c.'
* * '.c', or, equivalently, '0.c'
* * '+inf', 'inf', '-inf', 'NaN'
*
* Leading and trailing whitespace represent an error.
*
* # Arguments
*
* * num - A string
*
* # Return value
*
* `none` if the string did not represent a valid number. Otherwise,
* `Some(n)` where `n` is the floating-point number represented by `[num]`.
*/
#[inline(always)]
pub fn from_str_hex(num: &str) -> Option<f32> {
strconv::from_str_common(num, 16u, true, true, true,
strconv::ExpBin, false, false)
}
/**
* Convert a string in an given base to a float.
*
* Due to possible conflicts, this function does **not** accept
* the special values `inf`, `-inf`, `+inf` and `NaN`, **nor**
* does it recognize exponents of any kind.
*
* Leading and trailing whitespace represent an error.
*
* # Arguments
*
* * num - A string
* * radix - The base to use. Must lie in the range [2 .. 36]
*
* # Return value
*
* `none` if the string did not represent a valid number. Otherwise,
* `Some(n)` where `n` is the floating-point number represented by `num`.
*/
#[inline(always)]
pub fn from_str_radix(num: &str, rdx: uint) -> Option<f32> {
strconv::from_str_common(num, rdx, true, true, false,
strconv::ExpNone, false, false)
}
impl from_str::FromStr for f32 {
#[inline(always)]
fn from_str(val: &str) -> Option<f32> { from_str(val) }
}
impl num::FromStrRadix for f32 {
#[inline(always)]
fn from_str_radix(val: &str, rdx: uint) -> Option<f32> {
from_str_radix(val, rdx)
}
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End:
//