expr-use-visitor) early. Turns out I was wrong to remove this; it
causes a lot of pain trying to run EUV etc during typeck without
ICEing on erroneous programs.
These changes fix various problems encountered getting japaric's `at-iter` branch to work. This branch converts the `Iterator` trait to use an associated type.
[breaking-change]
The `mut` in slices is now redundant. Mutability is 'inferred' from position. This means that if mutability is only obvious from the type, you will need to use explicit calls to the slicing methods.
followed by a semicolon.
This allows code like `vec![1i, 2, 3].len();` to work.
This breaks code that uses macros as statements without putting
semicolons after them, such as:
fn main() {
...
assert!(a == b)
assert!(c == d)
println(...);
}
It also breaks code that uses macros as items without semicolons:
local_data_key!(foo)
fn main() {
println("hello world")
}
Add semicolons to fix this code. Those two examples can be fixed as
follows:
fn main() {
...
assert!(a == b);
assert!(c == d);
println(...);
}
local_data_key!(foo);
fn main() {
println("hello world")
}
RFC #378.
Closes#18635.
[breaking-change]
- The following operator traits now take their arguments by value: `Add`, `Sub`, `Mul`, `Div`, `Rem`, `BitAnd`, `BitOr`, `BitXor`, `Shl`, `Shr`. This breaks all existing implementations of these traits.
- The binary operation `a OP b` now "desugars" to `OpTrait::op_method(a, b)` and consumes both arguments.
- `String` and `Vec` addition have been changed to reuse the LHS owned value, and to avoid internal cloning. Only the following asymmetric operations are available: `String + &str` and `Vec<T> + &[T]`, which are now a short-hand for the "append" operation.
[breaking-change]
---
This passes `make check` locally. I haven't touch the unary operators in this PR, but converting them to by value should be very similar to this PR. I can work on them after this gets the thumbs up.
@nikomatsakis r? the compiler changes
@aturon r? the library changes. I think the only controversial bit is the semantic change of the `Vec`/`String` `Add` implementation.
cc #19148
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
This is accomplished by:
1. Add `MatchMode` enum to `expr_use_visitor`.
2. Computing the match mode for each pattern via a pre-pass, and then
passing the mode along when visiting the pattern in
expr_use_visitor.
3. Adding a `fn matched_pat` callback to expr_use_visitor, which is
called on interior struct and enum nodes of the pattern (as opposed
to `fn consume_pat`, which is only invoked for identifiers at the
leaves of the pattern), and invoking it accordingly.
Of particular interest are the `cat_downcast` instances established
when matching enum variants.
(Previously, scopes were solely identified with NodeId's; this
refactoring prepares for a future where that does not hold.)
Ground work for a proper fix to #8861.
(Previously, statically identifiable scopes/regions were solely
identified with NodeId's; this refactoring prepares for a future
where that 1:1 correspondence does not hold.)
This breaks code that referred to variant names in the same namespace as
their enum. Reexport the variants in the old location or alter code to
refer to the new locations:
```
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
=>
```
pub use self::Foo::{A, B};
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
or
```
pub enum Foo {
A,
B
}
fn main() {
let a = Foo::A;
}
```
[breaking-change]
Fixes#18567. `Struct{x:foo, .. with_expr}` did not walk `with_expr`, which allowed
using moved variables in some cases. The CFG for structs also built up with
`with_expr` happening before the fields, which is now reversed. (Fields are now
before the `with_expr` in the CFG)
Fixes#18567. Struct{x:foo, .. with_expr} did not walk with_expr, which allowed
using moved variables in some cases. The CFG for structs also built up with
with_expr happening before the fields, which is now reversed. (Fields are now
before the with_expr in the CFG)
Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]