rust/src/librustc/middle/expr_use_visitor.rs
Nick Cameron ed8f503911 Add hypothetical support for ranges with only an upper bound
Note that this doesn't add the surface syntax.
2014-12-30 13:06:24 +13:00

1274 lines
47 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A different sort of visitor for walking fn bodies. Unlike the
//! normal visitor, which just walks the entire body in one shot, the
//! `ExprUseVisitor` determines how expressions are being used.
pub use self::MutateMode::*;
pub use self::LoanCause::*;
pub use self::ConsumeMode::*;
pub use self::MoveReason::*;
pub use self::MatchMode::*;
use self::TrackMatchMode::*;
use self::OverloadedCallType::*;
use middle::{def, region, pat_util};
use middle::mem_categorization as mc;
use middle::mem_categorization::Typer;
use middle::ty::{mod, ParameterEnvironment, Ty};
use middle::ty::{MethodCall, MethodObject, MethodTraitObject};
use middle::ty::{MethodOrigin, MethodParam, MethodTypeParam};
use middle::ty::{MethodStatic, MethodStaticUnboxedClosure};
use util::ppaux::Repr;
use std::kinds;
use syntax::{ast, ast_util};
use syntax::ptr::P;
use syntax::codemap::Span;
///////////////////////////////////////////////////////////////////////////
// The Delegate trait
/// This trait defines the callbacks you can expect to receive when
/// employing the ExprUseVisitor.
pub trait Delegate<'tcx> {
// The value found at `cmt` is either copied or moved, depending
// on mode.
fn consume(&mut self,
consume_id: ast::NodeId,
consume_span: Span,
cmt: mc::cmt<'tcx>,
mode: ConsumeMode);
// The value found at `cmt` has been determined to match the
// pattern binding `matched_pat`, and its subparts are being
// copied or moved depending on `mode`. Note that `matched_pat`
// is called on all variant/structs in the pattern (i.e., the
// interior nodes of the pattern's tree structure) while
// consume_pat is called on the binding identifiers in the pattern
// (which are leaves of the pattern's tree structure).
//
// Note that variants/structs and identifiers are disjoint; thus
// `matched_pat` and `consume_pat` are never both called on the
// same input pattern structure (though of `consume_pat` can be
// called on a subpart of an input passed to `matched_pat).
fn matched_pat(&mut self,
matched_pat: &ast::Pat,
cmt: mc::cmt<'tcx>,
mode: MatchMode);
// The value found at `cmt` is either copied or moved via the
// pattern binding `consume_pat`, depending on mode.
fn consume_pat(&mut self,
consume_pat: &ast::Pat,
cmt: mc::cmt<'tcx>,
mode: ConsumeMode);
// The value found at `borrow` is being borrowed at the point
// `borrow_id` for the region `loan_region` with kind `bk`.
fn borrow(&mut self,
borrow_id: ast::NodeId,
borrow_span: Span,
cmt: mc::cmt<'tcx>,
loan_region: ty::Region,
bk: ty::BorrowKind,
loan_cause: LoanCause);
// The local variable `id` is declared but not initialized.
fn decl_without_init(&mut self,
id: ast::NodeId,
span: Span);
// The path at `cmt` is being assigned to.
fn mutate(&mut self,
assignment_id: ast::NodeId,
assignment_span: Span,
assignee_cmt: mc::cmt<'tcx>,
mode: MutateMode);
}
#[deriving(Copy, PartialEq, Show)]
pub enum LoanCause {
ClosureCapture(Span),
AddrOf,
AutoRef,
RefBinding,
OverloadedOperator,
ClosureInvocation,
ForLoop,
MatchDiscriminant
}
#[deriving(Copy, PartialEq, Show)]
pub enum ConsumeMode {
Copy, // reference to x where x has a type that copies
Move(MoveReason), // reference to x where x has a type that moves
}
#[deriving(Copy, PartialEq, Show)]
pub enum MoveReason {
DirectRefMove,
PatBindingMove,
CaptureMove,
}
#[deriving(Copy, PartialEq, Show)]
pub enum MatchMode {
NonBindingMatch,
BorrowingMatch,
CopyingMatch,
MovingMatch,
}
#[deriving(PartialEq,Show)]
enum TrackMatchMode<T> {
Unknown,
Definite(MatchMode),
Conflicting,
}
impl<T> kinds::Copy for TrackMatchMode<T> {}
impl<T> TrackMatchMode<T> {
// Builds up the whole match mode for a pattern from its constituent
// parts. The lattice looks like this:
//
// Conflicting
// / \
// / \
// Borrowing Moving
// \ /
// \ /
// Copying
// |
// NonBinding
// |
// Unknown
//
// examples:
//
// * `(_, some_int)` pattern is Copying, since
// NonBinding + Copying => Copying
//
// * `(some_int, some_box)` pattern is Moving, since
// Copying + Moving => Moving
//
// * `(ref x, some_box)` pattern is Conflicting, since
// Borrowing + Moving => Conflicting
//
// Note that the `Unknown` and `Conflicting` states are
// represented separately from the other more interesting
// `Definite` states, which simplifies logic here somewhat.
fn lub(&mut self, mode: MatchMode) {
*self = match (*self, mode) {
// Note that clause order below is very significant.
(Unknown, new) => Definite(new),
(Definite(old), new) if old == new => Definite(old),
(Definite(old), NonBindingMatch) => Definite(old),
(Definite(NonBindingMatch), new) => Definite(new),
(Definite(old), CopyingMatch) => Definite(old),
(Definite(CopyingMatch), new) => Definite(new),
(Definite(_), _) => Conflicting,
(Conflicting, _) => *self,
};
}
fn match_mode(&self) -> MatchMode {
match *self {
Unknown => NonBindingMatch,
Definite(mode) => mode,
Conflicting => {
// Conservatively return MovingMatch to let the
// compiler continue to make progress.
MovingMatch
}
}
}
}
#[deriving(Copy, PartialEq, Show)]
pub enum MutateMode {
Init,
JustWrite, // x = y
WriteAndRead, // x += y
}
#[deriving(Copy)]
enum OverloadedCallType {
FnOverloadedCall,
FnMutOverloadedCall,
FnOnceOverloadedCall,
}
impl OverloadedCallType {
fn from_trait_id(tcx: &ty::ctxt, trait_id: ast::DefId)
-> OverloadedCallType {
for &(maybe_function_trait, overloaded_call_type) in [
(tcx.lang_items.fn_once_trait(), FnOnceOverloadedCall),
(tcx.lang_items.fn_mut_trait(), FnMutOverloadedCall),
(tcx.lang_items.fn_trait(), FnOverloadedCall)
].iter() {
match maybe_function_trait {
Some(function_trait) if function_trait == trait_id => {
return overloaded_call_type
}
_ => continue,
}
}
tcx.sess.bug("overloaded call didn't map to known function trait")
}
fn from_method_id(tcx: &ty::ctxt, method_id: ast::DefId)
-> OverloadedCallType {
let method_descriptor = match ty::impl_or_trait_item(tcx, method_id) {
ty::MethodTraitItem(ref method_descriptor) => {
(*method_descriptor).clone()
}
ty::TypeTraitItem(_) => {
tcx.sess.bug("overloaded call method wasn't in method map")
}
};
let impl_id = match method_descriptor.container {
ty::TraitContainer(_) => {
tcx.sess.bug("statically resolved overloaded call method \
belonged to a trait?!")
}
ty::ImplContainer(impl_id) => impl_id,
};
let trait_ref = match ty::impl_trait_ref(tcx, impl_id) {
None => {
tcx.sess.bug("statically resolved overloaded call impl \
didn't implement a trait?!")
}
Some(ref trait_ref) => (*trait_ref).clone(),
};
OverloadedCallType::from_trait_id(tcx, trait_ref.def_id)
}
fn from_unboxed_closure(tcx: &ty::ctxt, closure_did: ast::DefId)
-> OverloadedCallType {
let trait_did =
tcx.unboxed_closures
.borrow()
.get(&closure_did)
.expect("OverloadedCallType::from_unboxed_closure: didn't \
find closure id")
.kind
.trait_did(tcx);
OverloadedCallType::from_trait_id(tcx, trait_did)
}
fn from_method_origin(tcx: &ty::ctxt, origin: &MethodOrigin)
-> OverloadedCallType {
match *origin {
MethodStatic(def_id) => {
OverloadedCallType::from_method_id(tcx, def_id)
}
MethodStaticUnboxedClosure(def_id) => {
OverloadedCallType::from_unboxed_closure(tcx, def_id)
}
MethodTypeParam(MethodParam { ref trait_ref, .. }) |
MethodTraitObject(MethodObject { ref trait_ref, .. }) => {
OverloadedCallType::from_trait_id(tcx, trait_ref.def_id)
}
}
}
}
///////////////////////////////////////////////////////////////////////////
// The ExprUseVisitor type
//
// This is the code that actually walks the tree. Like
// mem_categorization, it requires a TYPER, which is a type that
// supplies types from the tree. After type checking is complete, you
// can just use the tcx as the typer.
pub struct ExprUseVisitor<'d,'t,'tcx,TYPER:'t> {
typer: &'t TYPER,
mc: mc::MemCategorizationContext<'t,TYPER>,
delegate: &'d mut (Delegate<'tcx>+'d),
param_env: ParameterEnvironment<'tcx>,
}
/// Whether the elements of an overloaded operation are passed by value or by reference
enum PassArgs {
ByValue,
ByRef,
}
impl<'d,'t,'tcx,TYPER:mc::Typer<'tcx>> ExprUseVisitor<'d,'t,'tcx,TYPER> {
pub fn new(delegate: &'d mut Delegate<'tcx>,
typer: &'t TYPER,
param_env: ParameterEnvironment<'tcx>)
-> ExprUseVisitor<'d,'t,'tcx,TYPER> {
ExprUseVisitor {
typer: typer,
mc: mc::MemCategorizationContext::new(typer),
delegate: delegate,
param_env: param_env,
}
}
pub fn walk_fn(&mut self,
decl: &ast::FnDecl,
body: &ast::Block) {
self.walk_arg_patterns(decl, body);
self.walk_block(body);
}
fn walk_arg_patterns(&mut self,
decl: &ast::FnDecl,
body: &ast::Block) {
for arg in decl.inputs.iter() {
let arg_ty = self.typer.node_ty(arg.pat.id);
let fn_body_scope = region::CodeExtent::from_node_id(body.id);
let arg_cmt = self.mc.cat_rvalue(
arg.id,
arg.pat.span,
ty::ReScope(fn_body_scope), // Args live only as long as the fn body.
arg_ty);
self.walk_irrefutable_pat(arg_cmt, &*arg.pat);
}
}
fn tcx(&self) -> &'t ty::ctxt<'tcx> {
self.typer.tcx()
}
fn delegate_consume(&mut self,
consume_id: ast::NodeId,
consume_span: Span,
cmt: mc::cmt<'tcx>) {
let mode = copy_or_move(self.tcx(),
cmt.ty,
&self.param_env,
DirectRefMove);
self.delegate.consume(consume_id, consume_span, cmt, mode);
}
fn consume_exprs(&mut self, exprs: &Vec<P<ast::Expr>>) {
for expr in exprs.iter() {
self.consume_expr(&**expr);
}
}
pub fn consume_expr(&mut self, expr: &ast::Expr) {
debug!("consume_expr(expr={})", expr.repr(self.tcx()));
let cmt = self.mc.cat_expr(expr);
self.delegate_consume(expr.id, expr.span, cmt);
self.walk_expr(expr);
}
fn mutate_expr(&mut self,
assignment_expr: &ast::Expr,
expr: &ast::Expr,
mode: MutateMode) {
let cmt = self.mc.cat_expr(expr);
self.delegate.mutate(assignment_expr.id, assignment_expr.span, cmt, mode);
self.walk_expr(expr);
}
fn borrow_expr(&mut self,
expr: &ast::Expr,
r: ty::Region,
bk: ty::BorrowKind,
cause: LoanCause) {
debug!("borrow_expr(expr={}, r={}, bk={})",
expr.repr(self.tcx()), r.repr(self.tcx()), bk.repr(self.tcx()));
let cmt = self.mc.cat_expr(expr);
self.delegate.borrow(expr.id, expr.span, cmt, r, bk, cause);
// Note: Unlike consume, we can ignore ExprParen. cat_expr
// already skips over them, and walk will uncover any
// attachments or whatever.
self.walk_expr(expr)
}
fn select_from_expr(&mut self, expr: &ast::Expr) {
self.walk_expr(expr)
}
pub fn walk_expr(&mut self, expr: &ast::Expr) {
debug!("walk_expr(expr={})", expr.repr(self.tcx()));
self.walk_adjustment(expr);
match expr.node {
ast::ExprParen(ref subexpr) => {
self.walk_expr(&**subexpr)
}
ast::ExprPath(..) => { }
ast::ExprUnary(ast::UnDeref, ref base) => { // *base
if !self.walk_overloaded_operator(expr, &**base, Vec::new(), PassArgs::ByRef) {
self.select_from_expr(&**base);
}
}
ast::ExprField(ref base, _) => { // base.f
self.select_from_expr(&**base);
}
ast::ExprTupField(ref base, _) => { // base.<n>
self.select_from_expr(&**base);
}
ast::ExprIndex(ref lhs, ref rhs) => { // lhs[rhs]
if !self.walk_overloaded_operator(expr, &**lhs, vec![&**rhs], PassArgs::ByRef) {
self.select_from_expr(&**lhs);
self.consume_expr(&**rhs);
}
}
ast::ExprSlice(ref base, ref start, ref end, _) => { // base[start..end]
let args = match (start, end) {
(&Some(ref e1), &Some(ref e2)) => vec![&**e1, &**e2],
(&Some(ref e), &None) => vec![&**e],
(&None, &Some(ref e)) => vec![&**e],
(&None, &None) => Vec::new()
};
let overloaded =
self.walk_overloaded_operator(expr, &**base, args, PassArgs::ByRef);
assert!(overloaded);
}
ast::ExprRange(ref start, ref end) => {
start.as_ref().map(|e| self.consume_expr(&**e));
end.as_ref().map(|e| self.consume_expr(&**e));
}
ast::ExprCall(ref callee, ref args) => { // callee(args)
self.walk_callee(expr, &**callee);
self.consume_exprs(args);
}
ast::ExprMethodCall(_, _, ref args) => { // callee.m(args)
self.consume_exprs(args);
}
ast::ExprStruct(_, ref fields, ref opt_with) => {
self.walk_struct_expr(expr, fields, opt_with);
}
ast::ExprTup(ref exprs) => {
self.consume_exprs(exprs);
}
ast::ExprIf(ref cond_expr, ref then_blk, ref opt_else_expr) => {
self.consume_expr(&**cond_expr);
self.walk_block(&**then_blk);
for else_expr in opt_else_expr.iter() {
self.consume_expr(&**else_expr);
}
}
ast::ExprIfLet(..) => {
self.tcx().sess.span_bug(expr.span, "non-desugared ExprIfLet");
}
ast::ExprMatch(ref discr, ref arms, _) => {
let discr_cmt = self.mc.cat_expr(&**discr);
self.borrow_expr(&**discr, ty::ReEmpty, ty::ImmBorrow, MatchDiscriminant);
// treatment of the discriminant is handled while walking the arms.
for arm in arms.iter() {
let mode = self.arm_move_mode(discr_cmt.clone(), arm);
let mode = mode.match_mode();
self.walk_arm(discr_cmt.clone(), arm, mode);
}
}
ast::ExprVec(ref exprs) => {
self.consume_exprs(exprs);
}
ast::ExprAddrOf(m, ref base) => { // &base
// make sure that the thing we are pointing out stays valid
// for the lifetime `scope_r` of the resulting ptr:
let expr_ty = ty::expr_ty(self.tcx(), expr);
let r = ty::ty_region(self.tcx(), expr.span, expr_ty);
let bk = ty::BorrowKind::from_mutbl(m);
self.borrow_expr(&**base, r, bk, AddrOf);
}
ast::ExprInlineAsm(ref ia) => {
for &(_, ref input) in ia.inputs.iter() {
self.consume_expr(&**input);
}
for &(_, ref output, is_rw) in ia.outputs.iter() {
self.mutate_expr(expr, &**output,
if is_rw { WriteAndRead } else { JustWrite });
}
}
ast::ExprBreak(..) |
ast::ExprAgain(..) |
ast::ExprLit(..) => {}
ast::ExprLoop(ref blk, _) => {
self.walk_block(&**blk);
}
ast::ExprWhile(ref cond_expr, ref blk, _) => {
self.consume_expr(&**cond_expr);
self.walk_block(&**blk);
}
ast::ExprWhileLet(..) => {
self.tcx().sess.span_bug(expr.span, "non-desugared ExprWhileLet");
}
ast::ExprForLoop(ref pat, ref head, ref blk, _) => {
// The pattern lives as long as the block.
debug!("walk_expr for loop case: blk id={}", blk.id);
self.consume_expr(&**head);
// Fetch the type of the value that the iteration yields to
// produce the pattern's categorized mutable type.
let pattern_type = self.typer.node_ty(pat.id);
let blk_scope = region::CodeExtent::from_node_id(blk.id);
let pat_cmt = self.mc.cat_rvalue(pat.id,
pat.span,
ty::ReScope(blk_scope),
pattern_type);
self.walk_irrefutable_pat(pat_cmt, &**pat);
self.walk_block(&**blk);
}
ast::ExprUnary(op, ref lhs) => {
let pass_args = if ast_util::is_by_value_unop(op) {
PassArgs::ByValue
} else {
PassArgs::ByRef
};
if !self.walk_overloaded_operator(expr, &**lhs, Vec::new(), pass_args) {
self.consume_expr(&**lhs);
}
}
ast::ExprBinary(op, ref lhs, ref rhs) => {
let pass_args = if ast_util::is_by_value_binop(op) {
PassArgs::ByValue
} else {
PassArgs::ByRef
};
if !self.walk_overloaded_operator(expr, &**lhs, vec![&**rhs], pass_args) {
self.consume_expr(&**lhs);
self.consume_expr(&**rhs);
}
}
ast::ExprBlock(ref blk) => {
self.walk_block(&**blk);
}
ast::ExprRet(ref opt_expr) => {
for expr in opt_expr.iter() {
self.consume_expr(&**expr);
}
}
ast::ExprAssign(ref lhs, ref rhs) => {
self.mutate_expr(expr, &**lhs, JustWrite);
self.consume_expr(&**rhs);
}
ast::ExprCast(ref base, _) => {
self.consume_expr(&**base);
}
ast::ExprAssignOp(_, ref lhs, ref rhs) => {
// This will have to change if/when we support
// overloaded operators for `+=` and so forth.
self.mutate_expr(expr, &**lhs, WriteAndRead);
self.consume_expr(&**rhs);
}
ast::ExprRepeat(ref base, ref count) => {
self.consume_expr(&**base);
self.consume_expr(&**count);
}
ast::ExprClosure(..) => {
self.walk_captures(expr)
}
ast::ExprBox(ref place, ref base) => {
match *place {
Some(ref place) => self.consume_expr(&**place),
None => {}
}
self.consume_expr(&**base);
}
ast::ExprMac(..) => {
self.tcx().sess.span_bug(
expr.span,
"macro expression remains after expansion");
}
}
}
fn walk_callee(&mut self, call: &ast::Expr, callee: &ast::Expr) {
let callee_ty = self.typer.expr_ty_adjusted(callee);
debug!("walk_callee: callee={} callee_ty={}",
callee.repr(self.tcx()), callee_ty.repr(self.tcx()));
let call_scope = region::CodeExtent::from_node_id(call.id);
match callee_ty.sty {
ty::ty_bare_fn(..) => {
self.consume_expr(callee);
}
ty::ty_closure(ref f) => {
match f.onceness {
ast::Many => {
self.borrow_expr(callee,
ty::ReScope(call_scope),
ty::UniqueImmBorrow,
ClosureInvocation);
}
ast::Once => {
self.consume_expr(callee);
}
}
}
_ => {
let overloaded_call_type =
match self.typer.node_method_origin(MethodCall::expr(call.id)) {
Some(method_origin) => {
OverloadedCallType::from_method_origin(
self.tcx(),
&method_origin)
}
None => {
self.tcx().sess.span_bug(
callee.span,
format!("unexpected callee type {}",
callee_ty.repr(self.tcx())).as_slice())
}
};
match overloaded_call_type {
FnMutOverloadedCall => {
self.borrow_expr(callee,
ty::ReScope(call_scope),
ty::MutBorrow,
ClosureInvocation);
}
FnOverloadedCall => {
self.borrow_expr(callee,
ty::ReScope(call_scope),
ty::ImmBorrow,
ClosureInvocation);
}
FnOnceOverloadedCall => self.consume_expr(callee),
}
}
}
}
fn walk_stmt(&mut self, stmt: &ast::Stmt) {
match stmt.node {
ast::StmtDecl(ref decl, _) => {
match decl.node {
ast::DeclLocal(ref local) => {
self.walk_local(&**local);
}
ast::DeclItem(_) => {
// we don't visit nested items in this visitor,
// only the fn body we were given.
}
}
}
ast::StmtExpr(ref expr, _) |
ast::StmtSemi(ref expr, _) => {
self.consume_expr(&**expr);
}
ast::StmtMac(..) => {
self.tcx().sess.span_bug(stmt.span, "unexpanded stmt macro");
}
}
}
fn walk_local(&mut self, local: &ast::Local) {
match local.init {
None => {
let delegate = &mut self.delegate;
pat_util::pat_bindings(&self.typer.tcx().def_map, &*local.pat,
|_, id, span, _| {
delegate.decl_without_init(id, span);
})
}
Some(ref expr) => {
// Variable declarations with
// initializers are considered
// "assigns", which is handled by
// `walk_pat`:
self.walk_expr(&**expr);
let init_cmt = self.mc.cat_expr(&**expr);
self.walk_irrefutable_pat(init_cmt, &*local.pat);
}
}
}
/// Indicates that the value of `blk` will be consumed, meaning either copied or moved
/// depending on its type.
fn walk_block(&mut self, blk: &ast::Block) {
debug!("walk_block(blk.id={})", blk.id);
for stmt in blk.stmts.iter() {
self.walk_stmt(&**stmt);
}
for tail_expr in blk.expr.iter() {
self.consume_expr(&**tail_expr);
}
}
fn walk_struct_expr(&mut self,
_expr: &ast::Expr,
fields: &Vec<ast::Field>,
opt_with: &Option<P<ast::Expr>>) {
// Consume the expressions supplying values for each field.
for field in fields.iter() {
self.consume_expr(&*field.expr);
}
let with_expr = match *opt_with {
Some(ref w) => &**w,
None => { return; }
};
let with_cmt = self.mc.cat_expr(&*with_expr);
// Select just those fields of the `with`
// expression that will actually be used
let with_fields = match with_cmt.ty.sty {
ty::ty_struct(did, substs) => {
ty::struct_fields(self.tcx(), did, substs)
}
_ => {
self.tcx().sess.span_bug(
with_expr.span,
"with expression doesn't evaluate to a struct");
}
};
// Consume those fields of the with expression that are needed.
for with_field in with_fields.iter() {
if !contains_field_named(with_field, fields) {
let cmt_field = self.mc.cat_field(&*with_expr,
with_cmt.clone(),
with_field.name,
with_field.mt.ty);
self.delegate_consume(with_expr.id, with_expr.span, cmt_field);
}
}
// walk the with expression so that complex expressions
// are properly handled.
self.walk_expr(with_expr);
fn contains_field_named(field: &ty::field,
fields: &Vec<ast::Field>)
-> bool
{
fields.iter().any(
|f| f.ident.node.name == field.name)
}
}
// Invoke the appropriate delegate calls for anything that gets
// consumed or borrowed as part of the automatic adjustment
// process.
fn walk_adjustment(&mut self, expr: &ast::Expr) {
let typer = self.typer;
match typer.adjustments().borrow().get(&expr.id) {
None => { }
Some(adjustment) => {
match *adjustment {
ty::AdjustAddEnv(..) |
ty::AdjustReifyFnPointer(..) => {
// Creating a closure/fn-pointer consumes the
// input and stores it into the resulting
// rvalue.
debug!("walk_adjustment(AutoAddEnv|AdjustReifyFnPointer)");
let cmt_unadjusted =
self.mc.cat_expr_unadjusted(expr);
self.delegate_consume(expr.id, expr.span, cmt_unadjusted);
}
ty::AdjustDerefRef(ty::AutoDerefRef {
autoref: ref opt_autoref,
autoderefs: n
}) => {
self.walk_autoderefs(expr, n);
match *opt_autoref {
None => { }
Some(ref r) => {
self.walk_autoref(expr, r, n);
}
}
}
}
}
}
}
/// Autoderefs for overloaded Deref calls in fact reference their receiver. That is, if we have
/// `(*x)` where `x` is of type `Rc<T>`, then this in fact is equivalent to `x.deref()`. Since
/// `deref()` is declared with `&self`, this is an autoref of `x`.
fn walk_autoderefs(&mut self,
expr: &ast::Expr,
autoderefs: uint) {
debug!("walk_autoderefs expr={} autoderefs={}", expr.repr(self.tcx()), autoderefs);
for i in range(0, autoderefs) {
let deref_id = ty::MethodCall::autoderef(expr.id, i);
match self.typer.node_method_ty(deref_id) {
None => {}
Some(method_ty) => {
let cmt = self.mc.cat_expr_autoderefd(expr, i);
let self_ty = ty::ty_fn_args(method_ty)[0];
let (m, r) = match self_ty.sty {
ty::ty_rptr(r, ref m) => (m.mutbl, r),
_ => self.tcx().sess.span_bug(expr.span,
format!("bad overloaded deref type {}",
method_ty.repr(self.tcx()))[])
};
let bk = ty::BorrowKind::from_mutbl(m);
self.delegate.borrow(expr.id, expr.span, cmt,
*r, bk, AutoRef);
}
}
}
}
fn walk_autoref(&mut self,
expr: &ast::Expr,
autoref: &ty::AutoRef,
n: uint) {
debug!("walk_autoref expr={}", expr.repr(self.tcx()));
// Match for unique trait coercions first, since we don't need the
// call to cat_expr_autoderefd.
match *autoref {
ty::AutoUnsizeUniq(ty::UnsizeVtable(..)) |
ty::AutoUnsize(ty::UnsizeVtable(..)) => {
assert!(n == 1, format!("Expected exactly 1 deref with Uniq \
AutoRefs, found: {}", n));
let cmt_unadjusted =
self.mc.cat_expr_unadjusted(expr);
self.delegate_consume(expr.id, expr.span, cmt_unadjusted);
return;
}
_ => {}
}
let cmt_derefd = self.mc.cat_expr_autoderefd(expr, n);
debug!("walk_adjustment: cmt_derefd={}",
cmt_derefd.repr(self.tcx()));
match *autoref {
ty::AutoPtr(r, m, _) => {
self.delegate.borrow(expr.id,
expr.span,
cmt_derefd,
r,
ty::BorrowKind::from_mutbl(m),
AutoRef);
}
ty::AutoUnsizeUniq(_) | ty::AutoUnsize(_) | ty::AutoUnsafe(..) => {}
}
}
fn walk_overloaded_operator(&mut self,
expr: &ast::Expr,
receiver: &ast::Expr,
rhs: Vec<&ast::Expr>,
pass_args: PassArgs)
-> bool
{
if !self.typer.is_method_call(expr.id) {
return false;
}
match pass_args {
PassArgs::ByValue => {
self.consume_expr(receiver);
for &arg in rhs.iter() {
self.consume_expr(arg);
}
return true;
},
PassArgs::ByRef => {},
}
self.walk_expr(receiver);
// Arguments (but not receivers) to overloaded operator
// methods are implicitly autoref'd which sadly does not use
// adjustments, so we must hardcode the borrow here.
let r = ty::ReScope(region::CodeExtent::from_node_id(expr.id));
let bk = ty::ImmBorrow;
for &arg in rhs.iter() {
self.borrow_expr(arg, r, bk, OverloadedOperator);
}
return true;
}
fn arm_move_mode(&mut self, discr_cmt: mc::cmt<'tcx>, arm: &ast::Arm) -> TrackMatchMode<Span> {
let mut mode = Unknown;
for pat in arm.pats.iter() {
self.determine_pat_move_mode(discr_cmt.clone(), &**pat, &mut mode);
}
mode
}
fn walk_arm(&mut self, discr_cmt: mc::cmt<'tcx>, arm: &ast::Arm, mode: MatchMode) {
for pat in arm.pats.iter() {
self.walk_pat(discr_cmt.clone(), &**pat, mode);
}
for guard in arm.guard.iter() {
self.consume_expr(&**guard);
}
self.consume_expr(&*arm.body);
}
/// Walks an pat that occurs in isolation (i.e. top-level of fn
/// arg or let binding. *Not* a match arm or nested pat.)
fn walk_irrefutable_pat(&mut self, cmt_discr: mc::cmt<'tcx>, pat: &ast::Pat) {
let mut mode = Unknown;
self.determine_pat_move_mode(cmt_discr.clone(), pat, &mut mode);
let mode = mode.match_mode();
self.walk_pat(cmt_discr, pat, mode);
}
/// Identifies any bindings within `pat` and accumulates within
/// `mode` whether the overall pattern/match structure is a move,
/// copy, or borrow.
fn determine_pat_move_mode(&mut self,
cmt_discr: mc::cmt<'tcx>,
pat: &ast::Pat,
mode: &mut TrackMatchMode<Span>) {
debug!("determine_pat_move_mode cmt_discr={} pat={}", cmt_discr.repr(self.tcx()),
pat.repr(self.tcx()));
self.mc.cat_pattern(cmt_discr, pat, |_mc, cmt_pat, pat| {
let tcx = self.typer.tcx();
let def_map = &self.typer.tcx().def_map;
if pat_util::pat_is_binding(def_map, pat) {
match pat.node {
ast::PatIdent(ast::BindByRef(_), _, _) =>
mode.lub(BorrowingMatch),
ast::PatIdent(ast::BindByValue(_), _, _) => {
match copy_or_move(tcx,
cmt_pat.ty,
&self.param_env,
PatBindingMove) {
Copy => mode.lub(CopyingMatch),
Move(_) => mode.lub(MovingMatch),
}
}
_ => {
tcx.sess.span_bug(
pat.span,
"binding pattern not an identifier");
}
}
}
});
}
/// The core driver for walking a pattern; `match_mode` must be
/// established up front, e.g. via `determine_pat_move_mode` (see
/// also `walk_irrefutable_pat` for patterns that stand alone).
fn walk_pat(&mut self,
cmt_discr: mc::cmt<'tcx>,
pat: &ast::Pat,
match_mode: MatchMode) {
debug!("walk_pat cmt_discr={} pat={}", cmt_discr.repr(self.tcx()),
pat.repr(self.tcx()));
let mc = &self.mc;
let typer = self.typer;
let def_map = &self.typer.tcx().def_map;
let delegate = &mut self.delegate;
let param_env = &mut self.param_env;
mc.cat_pattern(cmt_discr.clone(), pat, |mc, cmt_pat, pat| {
if pat_util::pat_is_binding(def_map, pat) {
let tcx = typer.tcx();
debug!("binding cmt_pat={} pat={} match_mode={}",
cmt_pat.repr(tcx),
pat.repr(tcx),
match_mode);
// pat_ty: the type of the binding being produced.
let pat_ty = typer.node_ty(pat.id);
// Each match binding is effectively an assignment to the
// binding being produced.
let def = def_map.borrow()[pat.id].clone();
let binding_cmt = mc.cat_def(pat.id, pat.span, pat_ty, def);
delegate.mutate(pat.id, pat.span, binding_cmt, Init);
// It is also a borrow or copy/move of the value being matched.
match pat.node {
ast::PatIdent(ast::BindByRef(m), _, _) => {
let (r, bk) = {
(ty::ty_region(tcx, pat.span, pat_ty),
ty::BorrowKind::from_mutbl(m))
};
delegate.borrow(pat.id, pat.span, cmt_pat,
r, bk, RefBinding);
}
ast::PatIdent(ast::BindByValue(_), _, _) => {
let mode = copy_or_move(typer.tcx(),
cmt_pat.ty,
param_env,
PatBindingMove);
debug!("walk_pat binding consuming pat");
delegate.consume_pat(pat, cmt_pat, mode);
}
_ => {
typer.tcx().sess.span_bug(
pat.span,
"binding pattern not an identifier");
}
}
} else {
match pat.node {
ast::PatVec(_, Some(ref slice_pat), _) => {
// The `slice_pat` here creates a slice into
// the original vector. This is effectively a
// borrow of the elements of the vector being
// matched.
let (slice_cmt, slice_mutbl, slice_r) =
mc.cat_slice_pattern(cmt_pat, &**slice_pat);
// Note: We declare here that the borrow
// occurs upon entering the `[...]`
// pattern. This implies that something like
// `[a, ..b]` where `a` is a move is illegal,
// because the borrow is already in effect.
// In fact such a move would be safe-ish, but
// it effectively *requires* that we use the
// nulling out semantics to indicate when a
// value has been moved, which we are trying
// to move away from. Otherwise, how can we
// indicate that the first element in the
// vector has been moved? Eventually, we
// could perhaps modify this rule to permit
// `[..a, b]` where `b` is a move, because in
// that case we can adjust the length of the
// original vec accordingly, but we'd have to
// make trans do the right thing, and it would
// only work for `~` vectors. It seems simpler
// to just require that people call
// `vec.pop()` or `vec.unshift()`.
let slice_bk = ty::BorrowKind::from_mutbl(slice_mutbl);
delegate.borrow(pat.id, pat.span,
slice_cmt, slice_r,
slice_bk, RefBinding);
}
_ => { }
}
}
});
// Do a second pass over the pattern, calling `matched_pat` on
// the interior nodes (enum variants and structs), as opposed
// to the above loop's visit of than the bindings that form
// the leaves of the pattern tree structure.
mc.cat_pattern(cmt_discr, pat, |mc, cmt_pat, pat| {
let def_map = def_map.borrow();
let tcx = typer.tcx();
match pat.node {
ast::PatEnum(_, _) | ast::PatIdent(_, _, None) | ast::PatStruct(..) => {
match def_map.get(&pat.id) {
None => {
// no definition found: pat is not a
// struct or enum pattern.
}
Some(&def::DefVariant(enum_did, variant_did, _is_struct)) => {
let downcast_cmt =
if ty::enum_is_univariant(tcx, enum_did) {
cmt_pat
} else {
let cmt_pat_ty = cmt_pat.ty;
mc.cat_downcast(pat, cmt_pat, cmt_pat_ty, variant_did)
};
debug!("variant downcast_cmt={} pat={}",
downcast_cmt.repr(tcx),
pat.repr(tcx));
delegate.matched_pat(pat, downcast_cmt, match_mode);
}
Some(&def::DefStruct(..)) | Some(&def::DefTy(_, false)) => {
// A struct (in either the value or type
// namespace; we encounter the former on
// e.g. patterns for unit structs).
debug!("struct cmt_pat={} pat={}",
cmt_pat.repr(tcx),
pat.repr(tcx));
delegate.matched_pat(pat, cmt_pat, match_mode);
}
Some(&def::DefConst(..)) |
Some(&def::DefLocal(..)) => {
// This is a leaf (i.e. identifier binding
// or constant value to match); thus no
// `matched_pat` call.
}
Some(def @ &def::DefTy(_, true)) => {
// An enum's type -- should never be in a
// pattern.
let msg = format!("Pattern has unexpected type: {}", def);
tcx.sess.span_bug(pat.span, msg[])
}
Some(def) => {
// Remaining cases are e.g. DefFn, to
// which identifiers within patterns
// should not resolve.
let msg = format!("Pattern has unexpected def: {}", def);
tcx.sess.span_bug(pat.span, msg[])
}
}
}
ast::PatIdent(_, _, Some(_)) => {
// Do nothing; this is a binding (not a enum
// variant or struct), and the cat_pattern call
// will visit the substructure recursively.
}
ast::PatWild(_) | ast::PatTup(..) | ast::PatBox(..) |
ast::PatRegion(..) | ast::PatLit(..) | ast::PatRange(..) |
ast::PatVec(..) | ast::PatMac(..) => {
// Similarly, each of these cases does not
// correspond to a enum variant or struct, so we
// do not do any `matched_pat` calls for these
// cases either.
}
}
});
}
fn walk_captures(&mut self, closure_expr: &ast::Expr) {
debug!("walk_captures({})", closure_expr.repr(self.tcx()));
let tcx = self.typer.tcx();
ty::with_freevars(tcx, closure_expr.id, |freevars| {
match self.tcx().capture_mode(closure_expr.id) {
ast::CaptureByRef => {
self.walk_by_ref_captures(closure_expr, freevars);
}
ast::CaptureByValue => {
self.walk_by_value_captures(closure_expr, freevars);
}
}
});
}
fn walk_by_ref_captures(&mut self,
closure_expr: &ast::Expr,
freevars: &[ty::Freevar]) {
for freevar in freevars.iter() {
let id_var = freevar.def.def_id().node;
let cmt_var = self.cat_captured_var(closure_expr.id,
closure_expr.span,
freevar.def);
// Lookup the kind of borrow the callee requires, as
// inferred by regionbk
let upvar_id = ty::UpvarId { var_id: id_var,
closure_expr_id: closure_expr.id };
let upvar_borrow = self.typer.upvar_borrow(upvar_id);
self.delegate.borrow(closure_expr.id,
closure_expr.span,
cmt_var,
upvar_borrow.region,
upvar_borrow.kind,
ClosureCapture(freevar.span));
}
}
fn walk_by_value_captures(&mut self,
closure_expr: &ast::Expr,
freevars: &[ty::Freevar]) {
for freevar in freevars.iter() {
let cmt_var = self.cat_captured_var(closure_expr.id,
closure_expr.span,
freevar.def);
let mode = copy_or_move(self.tcx(), cmt_var.ty,
&self.param_env, CaptureMove);
self.delegate.consume(closure_expr.id, freevar.span, cmt_var, mode);
}
}
fn cat_captured_var(&mut self,
closure_id: ast::NodeId,
closure_span: Span,
upvar_def: def::Def)
-> mc::cmt<'tcx> {
// Create the cmt for the variable being borrowed, from the
// caller's perspective
let var_id = upvar_def.def_id().node;
let var_ty = self.typer.node_ty(var_id);
self.mc.cat_def(closure_id, closure_span, var_ty, upvar_def)
}
}
fn copy_or_move<'tcx>(tcx: &ty::ctxt<'tcx>,
ty: Ty<'tcx>,
param_env: &ParameterEnvironment<'tcx>,
move_reason: MoveReason)
-> ConsumeMode {
if ty::type_moves_by_default(tcx, ty, param_env) {
Move(move_reason)
} else {
Copy
}
}